// Numbas version: finer_feedback_settings {"name": "Regression", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Regression", "tags": [], "metadata": {"description": "

Find a regression equation.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "\n

To monitor its staff appraisal methods, a personnel department compares the results of the tests carried out on employees at their first appraisal with an assessment score of the same individuals two years later. The resulting data are as follows:

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Employee$\\var{obj[0]}$$\\var{obj[1]}$$\\var{obj[2]}$$\\var{obj[3]}$$\\var{obj[4]}$$\\var{obj[5]}$$\\var{obj[6]}$$\\var{obj[7]}$$\\var{obj[8]}$$\\var{obj[9]}$
First Test $(X)$$\\var{r1[0]}$$\\var{r1[1]}$$\\var{r1[2]}$$\\var{r1[3]}$$\\var{r1[4]}$$\\var{r1[5]}$$\\var{r1[6]}$$\\var{r1[7]}$$\\var{r1[8]}$$\\var{r1[9]}$
Later Score $(Y)$$\\var{r2[0]}$$\\var{r2[1]}$$\\var{r2[2]}$$\\var{r2[3]}$$\\var{r2[4]}$$\\var{r2[5]}$$\\var{r2[6]}$$\\var{r2[7]}$$\\var{r2[8]}$$\\var{r2[9]}$
\n \n ", "advice": "", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "extensions": ["stats"], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"tsqovern": {"name": "tsqovern", "group": "Ungrouped variables", "definition": "[t[0]^2/n,t[1]^2/n]", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "precround(1/n*(t[1]-spxy/ss[0]*t[0]),3)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "precround(spxy/ss[0],3)", "description": "", "templateType": "anything", "can_override": false}, "obj": {"name": "obj", "group": "Ungrouped variables", "definition": "['A','B','C','D','E','F','G','H','I','J']", "description": "", "templateType": "anything", "can_override": false}, "r1": {"name": "r1", "group": "Ungrouped variables", "definition": "repeat(round(normalsample(67,8)),10)", "description": "", "templateType": "anything", "can_override": false}, "r2": {"name": "r2", "group": "Ungrouped variables", "definition": "map(round(a1+b1*x+random(-9..9)),x,r1)", "description": "", "templateType": "anything", "can_override": false}, "ss": {"name": "ss", "group": "Ungrouped variables", "definition": "[ssq[0]-t[0]^2/n,ssq[1]-t[1]^2/n]", "description": "", "templateType": "anything", "can_override": false}, "res": {"name": "res", "group": "Ungrouped variables", "definition": "map(precround(r2[x]-(a+b*r1[x]),2),x,0..n-1)", "description": "", "templateType": "anything", "can_override": false}, "ssq": {"name": "ssq", "group": "Ungrouped variables", "definition": "[sum(map(x^2,x,r1)),sum(map(x^2,x,r2))]", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "10", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(10..20)", "description": "", "templateType": "anything", "can_override": false}, "ch": {"name": "ch", "group": "Ungrouped variables", "definition": "random(0..9)", "description": "", "templateType": "anything", "can_override": false}, "spxy": {"name": "spxy", "group": "Ungrouped variables", "definition": "sxy-t[0]*t[1]/n", "description": "", "templateType": "anything", "can_override": false}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "[sum(r1),sum(r2)]", "description": "", "templateType": "anything", "can_override": false}, "tol": {"name": "tol", "group": "Ungrouped variables", "definition": "0.001", "description": "", "templateType": "anything", "can_override": false}, "sc": {"name": "sc", "group": "Ungrouped variables", "definition": "r1[ch]", "description": "", "templateType": "anything", "can_override": false}, "sxy": {"name": "sxy", "group": "Ungrouped variables", "definition": "sum(map(r1[x]*r2[x],x,0..n-1))", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "random(0.25..0.45#0.05)", "description": "", "templateType": "anything", "can_override": false}, "ls": {"name": "ls", "group": "Ungrouped variables", "definition": "precround(a+b*sc,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["tsqovern", "a", "b", "obj", "r1", "r2", "ss", "res", "ssq", "n", "a1", "ch", "spxy", "t", "tol", "sc", "sxy", "b1", "ls"], "variable_groups": [], "functions": {"pstdev": {"parameters": [["l", "list"]], "type": "number", "language": "jme", "definition": "sqrt(abs(l)/(abs(l)-1))*stdev(l)"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [{"variable": "tsqovern", "part": "p1", "must_go_first": false}], "variableReplacementStrategy": "alwaysreplace", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the equation of the best fitting regression line:

\n

\\[Y = a + b \\times X.\\] Find $a$ and $b$ to 5 decimal places, then input them below to 3 decimal places. 

\n

$b=\\;$[[0]],      $a=\\;$[[1]] (enter both to 3 decimal places).

\n

", "stepsPenalty": "0", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n

To find $a$ and $b$ you first find  $\\displaystyle b = \\frac{SPXY}{SSX}$ where:

\n

$\\displaystyle SPXY=\\sum xy - \\frac{(\\sum x)\\times (\\sum y)}{10}$

\n

$\\displaystyle SSX=\\sum x^2 - \\frac{(\\sum x)^2}{10}$

\n

Then $\\displaystyle a = \\frac{1}{10}\\left[\\sum y-b \\sum x\\right]$

\n

Now go back and fill in the values for $a$ and $b$.

\n "}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "b-tol", "maxValue": "b+tol", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "a-tol", "maxValue": "a+tol", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [{"variable": "tsqovern", "must_go_first": false}], "variableReplacementStrategy": "alwaysreplace", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the equation of the best fitting regression line:

\n

\\[Y = a + b \\times X.\\] Find $a$ and $b$ to 5 decimal places, then input them below to 3 decimal places. 

\n

$b=\\;$[[0]],      $a=\\;$[[1]] (enter both to 3 decimal places).

\n

", "stepsPenalty": "0", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n

To find $a$ and $b$ you first find  $\\displaystyle b = \\frac{SPXY}{SSX}$ where:

\n

$\\displaystyle SPXY=\\sum xy - \\frac{(\\sum x)\\times (\\sum y)}{10}$

\n

$\\displaystyle SSX=\\sum x^2 - \\frac{(\\sum x)^2}{10}$

\n

Then $\\displaystyle a = \\frac{1}{10}\\left[\\sum y-b \\sum x\\right]$

\n

Now go back and fill in the values for $a$ and $b$.

\n "}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "b-tol", "maxValue": "b+tol", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "a-tol", "maxValue": "a+tol", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Yvonne Wancke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3703/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Yvonne Wancke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3703/"}]}