// Numbas version: finer_feedback_settings {"name": "Testing an hypothesis about the mean of a group (2).", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {"pstdev": {"definition": "sqrt(abs(l)/(abs(l)-1))*stdev(l)", "type": "number", "parameters": [["l", "list"]], "language": "jme"}}, "ungrouped_variables": ["hypval", "mdlower", "mdupper", "meansal", "mu1", "object", "objects", "outcome", "r1", "sdsal", "sed", "sig1", "stdlower", "stdupper", "t95", "tcalc", "thismany", "tlower", "tupper"], "name": "Testing an hypothesis about the mean of a group (2).", "tags": ["average", "data analysis", "differences", "elementary statistics", "hypothesis testing", "mean", "mean of differences", "paired t-test", "standard deviation", "standard deviation of differences", "statistics", "stats", "t-test", "variance"], "advice": "
First, recognise that this is a one-sample (or \"mean to hypothetical value\") t-test.
\nSo calculate the mean of the sample:
\n{meansal}
\nThen the standard deviation (sd) of the sample:
\n{sdsal}
\nNote: You should use your calculator to get both the mean and standard deviation.
\nThe standard error (se) is calculated as:
\n\\[ se = \\frac{ sd }{ \\sqrt{ n }} \\]
\nIt is:
\n{sed}
\nFinally, calculate the test statisitic, t-calc, as the mean difference divided by the standard error:
\n\\[ t-calc = \\frac{ mean difference }{ se} \\]
\nt-calc = {tcalc}
\nThere are 6 {objects}, so 5 degrees of freedom, and the test is two-tailed, so the t-table = 2.571.
\nIf t-calc is greater than 2.571, the null is rejected. As this is a two-tailed test, the sign of t-calc (positive or negative) is ignored.
", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "Find the mean and standard deviation of the sample.
\nMean = [[0]] (input to 2 decimal places )
\nStandard deviation = [[1]] (input to 2 decimal places)
\nNow find the one sample (or \"mean to hypothetical value\") t-test statistic using the values you have just calculated =[[2]] (input 2 decimal places)
\nIs the null hypothesis rejected? [[3]] Enter 0 for \"No\" and 1 for \"Yes\".
", "marks": 0, "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "2", "maxValue": "{mdupper}", "minValue": "{mdlower}", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": "1", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "2", "maxValue": "{stdupper}", "minValue": "{stdlower}", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": "1", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "2", "maxValue": "{tupper}", "minValue": "{tlower}", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"integerPartialCredit": 0, "integerAnswer": true, "allowFractions": false, "scripts": {}, "maxValue": "{outcome}", "minValue": "{outcome}", "correctAnswerFraction": false, "showCorrectAnswer": true, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "As part of regular maintenance, an assistant in an aquarium shop measures the salinity in its sea water tanks every week day (i.e. Monday to Friday). Normal salinity for sea water is 35 ppt (parts per thousand or 35 g of salt in 1 l of water). Sample data are in the table below:
\n| {object} | \nA | \nB | \nC | \nD | \nE | \nF | \n
| Weight (g) | \n$\\var{r1[0]}$ | \n$\\var{r1[1]}$ | \n$\\var{r1[2]}$ | \n$\\var{r1[3]}$ | \n$\\var{r1[4]}$ | \n$\\var{r1[5]}$ | \n
Is the salinity normal?
\nIn other words, test the following null hypothesis:
\nH0: Mean salinity is equal to 35 ppt.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"mu1": {"definition": "random(30..40#0.5)", "templateType": "anything", "group": "Ungrouped variables", "name": "mu1", "description": ""}, "tlower": {"definition": "tcalc-0.025", "templateType": "anything", "group": "Ungrouped variables", "name": "tlower", "description": ""}, "mdupper": {"definition": "meansal+0.025", "templateType": "anything", "group": "Ungrouped variables", "name": "mdupper", "description": ""}, "stdupper": {"definition": "sdsal+0.025", "templateType": "anything", "group": "Ungrouped variables", "name": "stdupper", "description": ""}, "object": {"definition": "'Sample'", "templateType": "anything", "group": "Ungrouped variables", "name": "object", "description": ""}, "hypval": {"definition": "35", "templateType": "anything", "group": "Ungrouped variables", "name": "hypval", "description": ""}, "sig1": {"definition": "random(2..5#0.2)", "templateType": "anything", "group": "Ungrouped variables", "name": "sig1", "description": ""}, "thismany": {"definition": "6", "templateType": "anything", "group": "Ungrouped variables", "name": "thismany", "description": ""}, "objects": {"definition": "'samples'", "templateType": "anything", "group": "Ungrouped variables", "name": "objects", "description": ""}, "mdlower": {"definition": "meansal-0.025", "templateType": "anything", "group": "Ungrouped variables", "name": "mdlower", "description": ""}, "tupper": {"definition": "tcalc+0.025", "templateType": "anything", "group": "Ungrouped variables", "name": "tupper", "description": ""}, "tcalc": {"definition": "precround((meansal-hypval)/(sdsal/sqrt(thismany)),6)", "templateType": "anything", "group": "Ungrouped variables", "name": "tcalc", "description": ""}, "t95": {"definition": "2.571", "templateType": "anything", "group": "Ungrouped variables", "name": "t95", "description": ""}, "sed": {"definition": "precround(sdsal/sqrt(thismany),6)", "templateType": "anything", "group": "Ungrouped variables", "name": "sed", "description": ""}, "outcome": {"definition": "if((abs(tcalc)>t95),1,0)", "templateType": "anything", "group": "Ungrouped variables", "name": "outcome", "description": ""}, "sdsal": {"definition": "precround(pstdev(r1),6)", "templateType": "anything", "group": "Ungrouped variables", "name": "sdsal", "description": ""}, "stdlower": {"definition": "sdsal-0.025", "templateType": "anything", "group": "Ungrouped variables", "name": "stdlower", "description": ""}, "meansal": {"definition": "precround(mean(r1),6)", "templateType": "anything", "group": "Ungrouped variables", "name": "meansal", "description": ""}, "r1": {"definition": "repeat(precround(normalsample(mu1,sig1),1),6)", "templateType": "anything", "group": "Ungrouped variables", "name": "r1", "description": ""}}, "metadata": {"notes": "", "description": "Testing an hypothesis about the mean of one group.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Keith McGuinness", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/523/"}], "resources": []}]}], "contributors": [{"name": "Keith McGuinness", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/523/"}]}