// Numbas version: finer_feedback_settings {"name": "A comparison of the means of three groups (2).", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {"pstdev": {"definition": "sqrt(abs(l)/(abs(l)-1))*stdev(l)", "type": "number", "parameters": [["l", "list"]], "language": "jme"}}, "ungrouped_variables": ["cval", "dfamong", "dftotal", "dfwithin", "fratio", "ftable", "grp1", "grp2", "grp3", "mean1", "mean2", "mean3", "msamong", "mswithin", "object", "objects", "outcome", "s1", "s2", "s3", "sig1", "slip", "ssamong", "sstotal", "sswithin", "sumallx", "sumsq1", "sumsq2", "sumsq3", "sumx1", "sumx2", "sumx3", "treat1", "treat2", "treat3", "tuk12", "tuk12sig", "tuk13", "tuk13sig", "tuk23", "tuk23sig", "tukse", "tukssd", "tukval", "var1", "var2", "var3"], "name": "A comparison of the means of three groups (2).", "tags": ["average", "data analysis", "differences", "elementary statistics", "hypothesis testing", "mean", "mean of differences", "paired t-test", "standard deviation", "standard deviation of differences", "statistics", "stats", "t-test", "variance"], "advice": "
Summary statistics
\nCalculate means and variances for both groups: variance ($s^2$) is just the standard deviation ($s$ or $sd$) squared.
\nMean 1 = {mean1}; Mean 2 = {mean2}; Mean 3 = {mean3}
\nVariance 1 = {var1}; Variance 2 = {var2}; Variance 3 = {var3}
\nCochran's value = {cval}; Table value = 0.707. If Cochran's value > 0.707, transformation of the data may be required. (This will be ignored in this example because it would greatly complicate the code.)
\nn1 = 6; n2 = 6; n3 = 6
\nIntermediate terms
\nCaalculate the following:
\nSum of Group 1 = {sumx1}; Sum of Group 2 {sumx2}= ; Sum of Group 3 = {sumx3}
\nSum of all values = {sumallx}
\nSum of squares of all values = {s2}
\nCalculate the S terms:
\nS1 = {s1}
\nS2 = {s2}
\nS3 = {s3}
\nComplete the ANOVA table
\nFill in the values (3 decimal places, except for df).
\nSource | \nSS | \ndf | \nMS | \nF-ratio | \n
Among | \n{ssamong} | \n{dfamong} | \n{msamong} | \n{fratio} | \n
Within | \n{sswithin} | \n{dfwithin} | \n{mswithin} | \n\n |
Total | \n{sstotal} | \n{dftotal} | \n\n | \n |
Outcome
\nIs the null hypothesis (all means equal) rejected? A 0 means \"no\" and a 1 means \"yes\".
\nOutcome = {outcome}
\n\nComplete Tukey's test
\n1. Find the appropriate q-value (k = 3, df = 15):
\ntable q = {tukval}
\n2. Calculate the standard error (square-root(MSwithin/n)):
\nSE = {tukse}
\n3. Calculate the smallest significant difference (SSD or Least Significant Difference, LSD):
\nSSD = {tukssd}
\n4. Calculate the differences between all pairs of means (ignore the sign):
\nMean 1 - Mean 2 = {tuk12}
Mean 1 - Mean 3 = {tuk13}
Mean 2 - Mean 3 = {tuk23}
5. Compare each difference to the SSD. If the difference is greater than SSD, then the means differ. Enter 0 below if the means are equal and 1 if they differ:
\nMean 1 - Mean 2 = {tuk12sig}
Mean 1 - Mean 3 = {tuk13sig}
Mean 2 - Mean 3 = {tuk23sig}
Note that this test can give inconclusive results.
", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "Summary statistics
\nCalculate means and variances for both groups: variance ($s^2$) is just the standard deviation ($s$ or $sd$) squared.
\nNote: All values, except df and outcome, should be given to 3 decimal places.
\nMean 1 = [[0]]; Mean 2 = [[1]]; Mean 3 = [[2]]
\nVariance 1 = [[3]]; Variance 2 = [[4]]; Variance 3 = [[5]]
\nn1 = 6; n2 = 6; n3 = 6
\nCochran's value = [[6]]
\n(Normally, we would compare the Cochran's value to the table (0.707) and transform the data if required, but this makes this too complicated, so we will assume that the calculated value is always lower than the table value.)
\nIn the next part, you enter the values for the intermediate terms.
", "marks": 0, "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{mean1}+{slip}", "minValue": "{mean1}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": "1", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{mean2}+{slip}", "minValue": "{mean2}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": "1", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{mean3}+{slip}", "minValue": "{mean3}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{var1}+{slip}", "minValue": "{var1}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{var2}+{slip}", "minValue": "{var2}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{var3}+{slip}", "minValue": "{var3}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{cval}+{slip}", "minValue": "{cval}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "Intermediate terms
\nEnter the following:
\nSum of Group 1 = [[0]]; Sum of Group 2 = [[1]]; Sum of Group 3 = [[2]]
\nSum of all values = [[3]]
\nSum of squares of all values = [[4]]
\nEnter the S terms:
\nS1 = [[5]]
\nS2 = [[6]]
\nS3 = [[7]]
\nIn the next part, you complete the analysis of variance.
", "marks": 0, "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{sumx1}+{slip}", "minValue": "{sumx1}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{sumx2}+{slip}", "minValue": "{sumx2}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{sumx3}+{slip}", "minValue": "{sumx3}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{sumallx}+{slip}", "minValue": "{sumallx}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{s2}+{slip}", "minValue": "{s2}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{s1}+{slip}", "minValue": "{s1}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{s2}+{slip}", "minValue": "{s2}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{s3}+{slip}", "minValue": "{s3}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "Complete the ANOVA table
\nFill in the values (3 decimal places, except for df).
\nSource | \nSS | \ndf | \nMS | \nF-ratio | \n
Among | \n[[0]] | \n[[3]] | \n[[6]] | \n[[8]] | \n
Within | \n[[1]] | \n[[4]] | \n[[7]] | \n\n |
Total | \n[[2]] | \n[[5]] | \n\n | \n |
Outcome
\nIs the null hypothesis (all means equal) rejected? Enter 0 for \"no\" and 1 for \"yes\".
\n[[9]]
\nIf the null hypothesis is rejected, Tukey's test can be used to determine which means differ.
", "marks": 0, "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{ssamong}+{slip}", "minValue": "{ssamong}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{sswithin}+{slip}", "minValue": "{sswithin}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{sstotal}+{slip}", "minValue": "{sstotal}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "integerPartialCredit": 0, "integerAnswer": true, "allowFractions": false, "scripts": {}, "precision": "0", "precisionMessage": "You have not given your answer to the correct precision.", "maxValue": "{dfamong}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "minValue": "{dfamong}", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "integerPartialCredit": 0, "integerAnswer": true, "allowFractions": false, "scripts": {}, "precision": "0", "precisionMessage": "You have not given your answer to the correct precision.", "maxValue": "{dfwithin}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "minValue": "{dfwithin}", "type": "numberentry", "showPrecisionHint": false}, {"integerPartialCredit": 0, "integerAnswer": true, "allowFractions": false, "scripts": {}, "maxValue": "{dftotal}", "minValue": "{dftotal}", "correctAnswerFraction": false, "showCorrectAnswer": true, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{msamong}+{slip}", "minValue": "{msamong}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{mswithin}+{slip}", "minValue": "{mswithin}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{fratio}+{slip}", "minValue": "{fratio}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "integerPartialCredit": 0, "integerAnswer": true, "allowFractions": false, "scripts": {}, "precision": "0", "precisionMessage": "You have not given your answer to the correct precision.", "maxValue": "{outcome}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "minValue": "{outcome}", "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "Complete Tukey's test
\n1. Find the appropriate q-value (k = 3, df = 15):
\ntable q = [[0]]
\n2. Calculate the standard error (square-root(MSwithin/n)):
\nSE = [[1]]
\n3. Calculate the smallest significant difference (SSD or Least Significant Difference, LSD):
\nSSD = [[2]]
\n4. Calculate the differences between all pairs of means (ignore the sign):
\nMean 1 - Mean 2 = [[3]]
Mean 1 - Mean 3 = [[4]]
Mean 2 - Mean 3 = [[5]]
5. Compare each difference to the SSD. If the difference is greater than SSD, then the means differ. Enter 0 below if the means are equal and 1 if they differ:
\nMean 1 - Mean 2 = [[6]]
Mean 1 - Mean 3 = [[7]]
Mean 2 - Mean 3 = [[8]]
Note that this test can give inconclusive results.
", "marks": 0, "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{tukval}+{slip}", "minValue": "{tukval}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{tukse}+{slip}", "minValue": "{tukse}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{tukssd}+{slip}", "minValue": "{tukssd}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{tuk12}+{slip}", "minValue": "{tuk12}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{tuk13}+{slip}", "minValue": "{tuk13}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "3", "maxValue": "{tuk23}+{slip}", "minValue": "{tuk23}-{slip}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "integerPartialCredit": "50", "integerAnswer": true, "allowFractions": false, "scripts": {}, "precision": 0, "precisionMessage": "You have not given your answer to the correct precision.", "maxValue": "{tuk12sig}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "marks": 1, "minValue": "{tuk12sig}", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "integerPartialCredit": "50", "integerAnswer": true, "allowFractions": false, "scripts": {}, "precision": 0, "precisionMessage": "You have not given your answer to the correct precision.", "maxValue": "{tuk13sig}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "minValue": "{tuk13sig}", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "integerPartialCredit": "50", "integerAnswer": true, "allowFractions": false, "scripts": {}, "precision": 0, "precisionMessage": "You have not given your answer to the correct precision.", "maxValue": "{tuk23sig}", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "minValue": "{tuk23sig}", "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "A study was done testing the effects of three different treatments for acne [2]. From a group of thirty (30) subjects, ten (10) were randomly assigned to each of three (3) treatments (i.e. each treatment group had 10 subjects). Improvement in lesions (spots and sores) was scored after a few months. The data is given below (numbers are improvement scores).
\nTreament 1: {grp1[0]}, {grp1[1]}, {grp1[2]}, {grp1[3]}, {grp1[4]}, {grp1[5]}
Treament 2: {grp2[0]}, {grp2[1]}, {grp2[2]}, {grp2[3]}, {grp2[4]}, {grp2[5]}
Treament 3: {grp3[0]}, {grp3[1]}, {grp3[2]}, {grp3[3]}, {grp3[4]}, {grp3[5]}
Is there a difference in response among the treatments?
\nIn other words, test the following null hypothesis:
\nH0: The mean improvement in lesions is the same for all treatments.
\n[Example adapted from Milton, JS (1992) Statistical methods in the biological and health sciences. McGraw-Hill.]", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"mswithin": {"definition": "sswithin/dfwithin", "templateType": "anything", "group": "Ungrouped variables", "name": "mswithin", "description": ""}, "mean1": {"definition": "precround(mean(grp1),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "mean1", "description": ""}, "mean2": {"definition": "precround(mean(grp2),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "mean2", "description": ""}, "mean3": {"definition": "precround(mean(grp3),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "mean3", "description": ""}, "sumsq1": {"definition": "sumsqrd(grp1)", "templateType": "anything", "group": "Ungrouped variables", "name": "sumsq1", "description": ""}, "sumsq3": {"definition": "sumsqrd(grp3)", "templateType": "anything", "group": "Ungrouped variables", "name": "sumsq3", "description": ""}, "sumsq2": {"definition": "sumsqrd(grp2)", "templateType": "anything", "group": "Ungrouped variables", "name": "sumsq2", "description": ""}, "slip": {"definition": "0.025", "templateType": "anything", "group": "Ungrouped variables", "name": "slip", "description": ""}, "sstotal": {"definition": "s2-s1", "templateType": "anything", "group": "Ungrouped variables", "name": "sstotal", "description": ""}, "grp3": {"definition": "repeat(precround(normalsample(treat3,sig1),1),6)", "templateType": "anything", "group": "Ungrouped variables", "name": "grp3", "description": ""}, "grp2": {"definition": "repeat(precround(normalsample(treat2,sig1),1),6)", "templateType": "anything", "group": "Ungrouped variables", "name": "grp2", "description": ""}, "grp1": {"definition": "repeat(precround(normalsample(treat1,sig1),1),6)", "templateType": "anything", "group": "Ungrouped variables", "name": "grp1", "description": ""}, "sswithin": {"definition": "s2-s3", "templateType": "anything", "group": "Ungrouped variables", "name": "sswithin", "description": ""}, "cval": {"definition": "precround(max([var1,var2,var3])/sum([var1,var2,var3]),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "cval", "description": ""}, "sumallx": {"definition": "(sumx1+sumx2+sumx3)", "templateType": "anything", "group": "Ungrouped variables", "name": "sumallx", "description": ""}, "treat2": {"definition": "random(65..75#0.5)", "templateType": "anything", "group": "Ungrouped variables", "name": "treat2", "description": ""}, "treat3": {"definition": "random(60..70#0.5)", "templateType": "anything", "group": "Ungrouped variables", "name": "treat3", "description": ""}, "treat1": {"definition": "random(45..55#0.5)", "templateType": "anything", "group": "Ungrouped variables", "name": "treat1", "description": ""}, "s3": {"definition": "(sumx1^2)/6+(sumx2^2)/6+(sumx3^2)/6", "templateType": "anything", "group": "Ungrouped variables", "name": "s3", "description": ""}, "s2": {"definition": "sumsqrd(grp1)+sumsqrd(grp2)+sumsqrd(grp3)", "templateType": "anything", "group": "Ungrouped variables", "name": "s2", "description": ""}, "s1": {"definition": "(sumallx^2)/18", "templateType": "anything", "group": "Ungrouped variables", "name": "s1", "description": ""}, "var2": {"definition": "precround((pstdev(grp2)^2),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "var2", "description": ""}, "tuk12": {"definition": "abs(mean1-mean2)", "templateType": "anything", "group": "Ungrouped variables", "name": "tuk12", "description": ""}, "tuk13": {"definition": "abs(mean1-mean3)", "templateType": "anything", "group": "Ungrouped variables", "name": "tuk13", "description": ""}, "dfamong": {"definition": "2", "templateType": "anything", "group": "Ungrouped variables", "name": "dfamong", "description": ""}, "sumx1": {"definition": "sum(grp1)", "templateType": "anything", "group": "Ungrouped variables", "name": "sumx1", "description": ""}, "sumx2": {"definition": "sum(grp2)", "templateType": "anything", "group": "Ungrouped variables", "name": "sumx2", "description": ""}, "sumx3": {"definition": "sum(grp3)", "templateType": "anything", "group": "Ungrouped variables", "name": "sumx3", "description": ""}, "var1": {"definition": "precround((pstdev(grp1)^2),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "var1", "description": ""}, "var3": {"definition": "precround((pstdev(grp3)^2),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "var3", "description": ""}, "msamong": {"definition": "ssamong/dfamong", "templateType": "anything", "group": "Ungrouped variables", "name": "msamong", "description": ""}, "object": {"definition": "'Athlete'", "templateType": "anything", "group": "Ungrouped variables", "name": "object", "description": ""}, "tukssd": {"definition": "precround(tukval*tukse,3)", "templateType": "anything", "group": "Ungrouped variables", "name": "tukssd", "description": ""}, "dfwithin": {"definition": "15", "templateType": "anything", "group": "Ungrouped variables", "name": "dfwithin", "description": ""}, "sig1": {"definition": "random(1..3)", "templateType": "anything", "group": "Ungrouped variables", "name": "sig1", "description": ""}, "objects": {"definition": "'Athletes'", "templateType": "anything", "group": "Ungrouped variables", "name": "objects", "description": ""}, "ssamong": {"definition": "s3-s1", "templateType": "anything", "group": "Ungrouped variables", "name": "ssamong", "description": ""}, "tuk12sig": {"definition": "if(tuk12>tukssd,1,0)", "templateType": "anything", "group": "Ungrouped variables", "name": "tuk12sig", "description": ""}, "fratio": {"definition": "precround(msamong/mswithin,3)", "templateType": "anything", "group": "Ungrouped variables", "name": "fratio", "description": ""}, "tuk13sig": {"definition": "if(tuk13>tukssd,1,0)", "templateType": "anything", "group": "Ungrouped variables", "name": "tuk13sig", "description": ""}, "tuk23": {"definition": "abs(mean2-mean3)", "templateType": "anything", "group": "Ungrouped variables", "name": "tuk23", "description": ""}, "tuk23sig": {"definition": "if(tuk23>tukssd,1,0)", "templateType": "anything", "group": "Ungrouped variables", "name": "tuk23sig", "description": ""}, "tukval": {"definition": "3.67", "templateType": "anything", "group": "Ungrouped variables", "name": "tukval", "description": ""}, "ftable": {"definition": "3.68", "templateType": "anything", "group": "Ungrouped variables", "name": "ftable", "description": ""}, "dftotal": {"definition": "17", "templateType": "anything", "group": "Ungrouped variables", "name": "dftotal", "description": ""}, "tukse": {"definition": "precround(sqrt(mswithin/6),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "tukse", "description": ""}, "outcome": {"definition": "if(fratio>ftable,1,0)", "templateType": "anything", "group": "Ungrouped variables", "name": "outcome", "description": ""}}, "metadata": {"notes": "", "description": "
A comparison of the means of three groups.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Keith McGuinness", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/523/"}]}]}], "contributors": [{"name": "Keith McGuinness", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/523/"}]}