// Numbas version: finer_feedback_settings {"name": "Combining algebraic fractions 1 (Video)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variables": {"a2": {"definition": "1", "name": "a2", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "a1": {"definition": "1", "name": "a1", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "s1": {"definition": "if(c<0,-1,1)", "name": "s1", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "c": {"definition": "random(-9..9 except [0,-a])", "name": "c", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "nb": {"definition": "if(c<0,'taking away','adding')", "name": "nb", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "a": {"definition": "random(1..9)", "name": "a", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "b": {"definition": "random(-9..9 except 0)", "name": "b", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "d": {"definition": "random(-9..9 except [0,round(b*a2/a1)])", "name": "d", "description": "", "templateType": "anything", "group": "Ungrouped variables"}}, "statement": "
Add the following two fractions together and express as a single fraction over a common denominator.
", "variablesTest": {"condition": "", "maxRuns": 100}, "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "metadata": {"description": "Express $\\displaystyle \\frac{a}{x + b} \\pm \\frac{c}{x + d}$ as an algebraic single fraction over a common denominator.
\nContains a video in Show steps.
", "licence": "Creative Commons Attribution 4.0 International"}, "name": "Combining algebraic fractions 1 (Video)", "extensions": [], "advice": "\nThe formula for {nb} fractions is :
\n\\[\\simplify[std]{a / b + {s1} * (c / d) = (ad + {s1} * bc) / bd}\\]
\nand for this exercise we have $\\simplify{b=x+{b}}$, $\\simplify{d=x+{d}}$.
Hence we have:
\\[\\simplify[std]{{a} / ({a1}*x + {b}) + ({c} / ({a2}*x + {d})) = ({a} * ({a2}*x + {d}) + {c} * ({a1}*x + {b})) / (({a1}*x + {b}) * ({a2}*x + {d})) = ({a*a2 + c*a1} * x + {a * d + c * b}) / (({a1}*x + {b}) * ({a2}*x + {d}))}\\]
Input as a single fraction.
", "showStrings": false, "partialCredit": 0}, "checkVariableNames": false, "expectedVariableNames": [], "vsetRangePoints": 5}], "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}, "showCorrectAnswer": true, "customMarkingAlgorithm": "", "unitTests": [], "extendBaseMarkingAlgorithm": true, "marks": 0, "steps": [{"variableReplacementStrategy": "originalfirst", "unitTests": [], "extendBaseMarkingAlgorithm": true, "marks": 0, "showFeedbackIcon": true, "customMarkingAlgorithm": "", "prompt": "The formula for {nb} fractions is:
\n\\[\\simplify[std]{a / b + {s1} * (c / d) = (ad + {s1} * bc) / bd}\\]
\nand for this exercise we have $\\simplify{b=x+{b}}$, $\\simplify{d=x+{d}}$.
\nNote that in your answer you do not need to expand the denominator.
\nThe following video goes through an example similar to this one.
\n", "type": "information", "scripts": {}, "showCorrectAnswer": true, "variableReplacements": []}], "type": "gapfill", "stepsPenalty": 1, "prompt": "Express
\n\\[\\simplify{{a} / ({a1}x + {b}) + ({c} / ({a2}x + {d}))}\\]
\nas a single fraction.
\nEnter the fraction here: [[0]]
\nInput your answer in the form $\\displaystyle \\frac{(ax+b)}{((cx+d)(ex+f))}$ with no other brackets than those shown.
\nClick on Show steps if you need help. You will lose one mark if you do so.
"}], "variable_groups": [], "type": "question", "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}]}