// Numbas version: finer_feedback_settings {"name": "Parallel wires and superposition", "extensions": [], "custom_part_types": [], "resources": [["question-resources/wires.png", "/srv/numbas/media/question-resources/wires.png"], ["question-resources/current_angled_anti_qHgtK8m.png", "/srv/numbas/media/question-resources/current_angled_anti_qHgtK8m.png"], ["question-resources/current_angled_clock_dd9WdQN.png", "/srv/numbas/media/question-resources/current_angled_clock_dd9WdQN.png"], ["question-resources/current_anti_kwFIMFr.png", "/srv/numbas/media/question-resources/current_anti_kwFIMFr.png"], ["question-resources/current_clock_iH5WgUI.png", "/srv/numbas/media/question-resources/current_clock_iH5WgUI.png"], ["question-resources/current_mixed_xEHmLa0.png", "/srv/numbas/media/question-resources/current_mixed_xEHmLa0.png"], ["question-resources/current_no_direction_IQWaXTk.png", "/srv/numbas/media/question-resources/current_no_direction_IQWaXTk.png"], ["question-resources/current_spiral_Y13ML67.png", "/srv/numbas/media/question-resources/current_spiral_Y13ML67.png"], ["question-resources/Hcomp.png", "/srv/numbas/media/question-resources/Hcomp.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Parallel wires and superposition", "tags": ["mag"], "metadata": {"description": "

Practice at superimposing magnetic fields.

", "licence": "All rights reserved"}, "statement": "

This question focuses upon the fields arising from currents in straight wires.

\n

When providing numerical answers you may express them using scientific notation.  Unless stated otherwise, express values to four significant figures and use the values of physical constants as provided in the course notes.

", "advice": "

From a Biot-Savart law, the magnetic fields from an infinitely long, straight wire can be derived to be 

\n

$\\displaystyle H={B\\over\\mu}={i\\over 2\\pi r}$

\n

where $H$ is the magnetizing field strength (A/m), $B$ is the magnetic flux denstity (T), $\\mu$ is the permeability (N/A$^2$), $i$ is the current (A), and $r$ is the distance from the wire (m).  The units options provided in the question are not necessarily simply the same as those listed here, but there are acceptable or equivalent units.  For example, an Amp is equivalent to a Coulomb per second, and Å is the Ångstrom unit which is $10^{-10}$ m.

\n

For the direction, we can employ the right-hand screw rule and note that both $H$ and $B$ circulate about the wire in a clockwise direction as viewed along the current.

\n

For the pair of wires, we can use simple geometry to determine the magnitudes and directions for the field arising at each point from each wire.  At A the field from the right hand wire is directly to the right and has a magnitude of $\\var{current}/(2\\pi\\times\\var{pos})$ in units of A/cm. The field at A due to the left-hand wire is the most complicated of the four components.  The distance of A from the wire using Pythagorus is $\\sqrt{(3\\times\\var{pos}^2+\\var{pos}^2}$ in cm and the direction can be obtained.

\n

\n

In the diagram we can see that the angle, $\\theta$ can be obtained since we know the two distances involved to be $3\\times\\var{pos}$ and $\\var{pos}$ in the horizontal and vertical directions, respectively (cm).  Once we know the magnitude of $H$, we can determine the horizontal and vertical components from the diagram to be $-|H|\\sin(\\theta)$ and $|H|\\cos(\\theta)$, respectively.

\n

Adding the $x$-components from each wire together gives the $x$-component of the $H$ field at A, and so on.

\n

", "rulesets": {}, "extensions": [], "variables": {"pos": {"name": "pos", "group": "Ungrouped variables", "definition": "random(5..25)*0.1", "description": "

Position variable that defines all parts of the system (cm).

", "templateType": "anything"}, "w2x": {"name": "w2x", "group": "Ungrouped variables", "definition": "pos", "description": "

x-co-ordinate of right-hand wire, cm.

", "templateType": "anything"}, "w2y": {"name": "w2y", "group": "Ungrouped variables", "definition": "0", "description": "

y-co-ordinate of right-hand wire, cm.

", "templateType": "anything"}, "w1x": {"name": "w1x", "group": "Ungrouped variables", "definition": "-2*pos", "description": "

x-co-ordinate of left-hand wire, cm.

", "templateType": "anything"}, "w1y": {"name": "w1y", "group": "Ungrouped variables", "definition": "0", "description": "

y-co-ordinate of left-hand wire, cm.

", "templateType": "anything"}, "ax": {"name": "ax", "group": "Ungrouped variables", "definition": "pos", "description": "

x-co-ordinate of point A, cm.

", "templateType": "anything"}, "ay": {"name": "ay", "group": "Ungrouped variables", "definition": "pos", "description": "

y-co-ordinate ofpoint A, cm.

", "templateType": "anything"}, "bx": {"name": "bx", "group": "Ungrouped variables", "definition": "0", "description": "

x-co-ordinate ofpoint B, cm.

", "templateType": "anything"}, "by": {"name": "by", "group": "Ungrouped variables", "definition": "0", "description": "

y-co-ordinate ofpoint B, cm.

", "templateType": "anything"}, "mu0": {"name": "mu0", "group": "Ungrouped variables", "definition": "4*10^-7 pi ", "description": "

Permeability of free space, N^2/A

", "templateType": "anything"}, "mur": {"name": "mur", "group": "Ungrouped variables", "definition": "random(30..250)", "description": "

Relative permeability of embedding material.

", "templateType": "anything"}, "ha2": {"name": "ha2", "group": "Ungrouped variables", "definition": "vector(current / 2 / pi / ay,0)", "description": "

H from right-wire at A, A/cm

", "templateType": "anything"}, "current": {"name": "current", "group": "Ungrouped variables", "definition": "random(1..50)*0.1", "description": "

Current in each wire, Amps.

", "templateType": "anything"}, "ha1": {"name": "ha1", "group": "Ungrouped variables", "definition": "vector(- current / 2 / pi / pos /10, 3 current / 2 / pi / pos /10)", "description": "

H from left-wire at A, A/cm

", "templateType": "anything"}, "ha": {"name": "ha", "group": "Ungrouped variables", "definition": "ha1 + ha2", "description": "

Field at A, A/cm.

", "templateType": "anything"}, "modha": {"name": "modha", "group": "Ungrouped variables", "definition": "sqrt(dot(ha,ha))", "description": "

Magnitude of H at A in A/cm.

", "templateType": "anything"}, "hb1": {"name": "hb1", "group": "Ungrouped variables", "definition": "vector(0,current/2/pi/2/pos)", "description": "

H from left-wire at B, A/cm

", "templateType": "anything"}, "hb2": {"name": "hb2", "group": "Ungrouped variables", "definition": "vector(0,current/2/pi/pos)", "description": "

H from right-wire at B, A/cm

", "templateType": "anything"}, "hb": {"name": "hb", "group": "Ungrouped variables", "definition": "hb1+hb2", "description": "

Field at A, A/cm.

", "templateType": "anything"}, "modhb": {"name": "modhb", "group": "Ungrouped variables", "definition": "sqrt(dot(hb,hb))", "description": "

Magnitude of H at B, A/cm.

", "templateType": "anything"}, "fpul": {"name": "fpul", "group": "Ungrouped variables", "definition": "current^2 / (2 pi * (3 *pos/100) ) * mu0* mur *10^6", "description": "

Force per unit length on the wires, muN/m

", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["ax", "ay", "bx", "by", "current", "ha", "ha1", "ha2", "hb", "hb1", "hb2", "modha", "modhb", "mu0", "mur", "pos", "w1x", "w1y", "w2x", "w2y", "fpul"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Field", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The magntiude of a magnetic field due to a long, straight wire is 

\n

$\\displaystyle \\left|\\vec{H}\\right|={i\\over 2\\pi r}$.

\n

Select the correct names and acceptable units for each symbol.

\n

$H$ [[0]] [[1]]

\n

$i$ [[2]] [[3]]

\n

$r$ [[4]] [[5]]

", "gaps": [{"type": "1_n_2", "useCustomName": true, "customName": "H quantity", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "3", "showCellAnswerState": true, "choices": ["magnetic flux density", "inductance", "reluctance", "flux linkage", "magnetising field strength", "current", "voltage", "capacitance", "radius of the field", "distance along the wire", "distance from the wire", "radius of the wire"], "matrix": [0, 0, 0, 0, "1", 0, 0, 0, 0, 0, 0, 0], "distractors": ["", "", "", "", "", "", "", "", "", "", "", ""]}, {"type": "1_n_2", "useCustomName": true, "customName": "H unit", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "4", "showCellAnswerState": true, "choices": ["V", "V/m", "V/A", "A.J", "H", "C.m−1.s−1", "A/s", "H−1", "Å", "m−1", "C/s"], "matrix": [0, 0, 0, 0, 0, "1", 0, 0, 0, 0, 0], "distractors": ["", "", "", "", "", "", "", "", "", "", ""]}, {"type": "1_n_2", "useCustomName": true, "customName": "i quantity", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "3", "showCellAnswerState": true, "choices": ["magnetic flux density", "inductance", "reluctance", "flux linkage", "magnetising field strength", "current", "voltage", "capacitance", "radius of the field", "distance along the wire", "distance from the wire", "radius of the wire"], "matrix": [0, 0, 0, 0, 0, "1", 0, 0, 0, 0, 0, 0], "distractors": ["", "", "", "", "", "", "", "", "", "", "", ""]}, {"type": "1_n_2", "useCustomName": true, "customName": "i unit", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "4", "showCellAnswerState": true, "choices": ["V", "V/m", "V/A", "A.J", "H", "C.m−1.s−1", "A/s", "H−1", "Å", "m−1", "C/s"], "matrix": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "1"], "distractors": ["", "", "", "", "", "", "", "", "", "", ""]}, {"type": "1_n_2", "useCustomName": true, "customName": "r quantity", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "3", "showCellAnswerState": true, "choices": ["magnetic flux density", "inductance", "reluctance", "flux linkage", "magnetising field strength", "current", "voltage", "capacitance", "radius of the field", "distance along the wire", "distance from the wire", "radius of the wire"], "matrix": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "1", 0], "distractors": ["", "", "", "", "", "", "", "", "", "", "", ""]}, {"type": "1_n_2", "useCustomName": true, "customName": "r unit", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "4", "showCellAnswerState": true, "choices": ["V", "V/m", "V/A", "A.J", "H", "C.m−1.s−1", "A/s", "H−1", "Å", "m−1", "C/s"], "matrix": [0, 0, 0, 0, 0, 0, 0, 0, "1", 0, 0], "distractors": ["", "", "", "", "", "", "", "", "", "", ""]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Direction of field", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Which of these diagram most realistically represents the magnetic fields from a constant current in a wire?  Take the direction of the current to be into the page.  The circle at the centre of each diagram is the cross-section of the wire.

\n

[[0]]

", "gaps": [{"type": "1_n_2", "useCustomName": true, "customName": "Options", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "6", "showCellAnswerState": true, "choices": ["", "", "", "", "", ""], "matrix": [0, 0, "1", 0, 0, 0], "distractors": ["", "", "", "", "", ""]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Pair of wires", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Consider the case of two, parallel wires as below.

\n

\n

Applying the principle of superposition, we can consider the field from each wire separately.  For each wire indicate the direction of the magnetic flux at each point, A and B.

\n

[[0]]

", "gaps": [{"type": "m_n_x", "useCustomName": true, "customName": "Directions", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": false, "shuffleAnswers": false, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "choices": ["At A due to left wire", "At A due to right wire", "At B due to left wire", "At B due to right wire"], "matrix": [[0, 0, 0, 0, 0, 0, "1"], ["1", 0, 0, 0, 0, 0, 0], [0, 0, "1", 0, 0, 0, 0], [0, 0, "1", 0, 0, 0, 0]], "layout": {"type": "all", "expression": ""}, "answers": ["$+x$", "$-x$", "$+y$", "$-y$", "$+z$", "$-z$", "a mixture of $x$ and $y$"]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Fields at A and B", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If the co-ordinates of the two wires are $(\\var{w1x},\\var{w1y})$ and $(\\var{w2x},\\var{w2y})$, A is $(\\var{ax},\\var{ay})$ and B is $(\\var{bx},\\var{by})$, determine the magnitudes of $\\vec{H}$ at A and B. The current in each wire has a magnitude of {current} A and the co-ordinates listed here are in cm.

\n

$\\left|\\vec{H}(A)\\right|=$[[0]] [[2]]

\n

$\\left|\\vec{H}(B)\\right|=$[[1]] [[2]]

\n

What are the unit vectors for the directions of the field at A and B?  Do not use scientific notation in this part of the question.

\n

Direction at A: [[3]]

\n

Direction at B: [[4]]

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "H(A)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "modha*0.995", "maxValue": "modha*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "H(B)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "modhb*0.995", "maxValue": "modhb*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}, {"type": "1_n_2", "useCustomName": true, "customName": "Units", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["A/cm", "V/m", "Wb", "Wb/m", "T", "N/A", "H", "C/s", "m/s"], "matrix": ["1", 0, 0, 0, 0, 0, 0, 0, 0], "distractors": ["", "", "", "", "", "", "", "", ""]}, {"type": "matrix", "useCustomName": true, "customName": "Direction at A", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "vector(ha/modha)", "correctAnswerFractions": false, "numRows": "2", "numColumns": "1", "allowResize": false, "tolerance": "0.005", "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false}, {"type": "matrix", "useCustomName": true, "customName": "Direction at B", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "vector(hb/modhb)", "correctAnswerFractions": false, "numRows": "2", "numColumns": "1", "allowResize": false, "tolerance": "0.005", "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}]}]}], "contributors": [{"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}]}