// Numbas version: finer_feedback_settings {"name": "Field in the centre of of a wire loop", "extensions": [], "custom_part_types": [], "resources": [["question-resources/Picture_1_KeCQXYx.png", "/srv/numbas/media/question-resources/Picture_1_KeCQXYx.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Field in the centre of of a wire loop", "tags": ["mag"], "metadata": {"description": "

Field and force (no prior knowledge required for the force)

", "licence": "All rights reserved"}, "statement": "

Consider a single loop of wire carring a constant current. 

\n

When providing numerical answers you may express them using scientific notation.  Express values to four significant figures and use the values of physical constants as provided in the course notes.

", "advice": "

The field at the centre of a circular current loop has a magnitude $H=j/2R$, where $j$ is the current and $R$ is the radius of the loop.  The direction can be found using the right-hand screw rule: grab the wire with your right hand so that the thumb points along the direction of the current.  The field circulates around the wire in the direction that your fingers are pointing.

\n

The expression for the force provided in the question is the magnetic term in the Lorentz force.  You're told that it's an electron moving which means $q=-1.6\\times10^{-19}$C, and the formula for $B$ is what's required for the preceding step, i.e. 

\n

$\\displaystyle |\\vec{B}|=\\mu_0|\\vec{H}|={\\mu_0j \\over 2R}\\Rightarrow|\\vec{F}|={eu\\mu_0j \\over 2R}$

\n

There are no unknowns on the right hand side so a value for the force can be determined.  The force of {forcef} fN determined in this case seems rediculously small and essentially zero, but we have to note that the electron also has a very small mass (order $10^{-30}$kg), so it will result in a very high acceleration!

", "rulesets": {}, "extensions": [], "variables": {"radiuscm": {"name": "radiuscm", "group": "Ungrouped variables", "definition": "random(1..5#0.1)", "description": "", "templateType": "anything"}, "radius": {"name": "radius", "group": "Ungrouped variables", "definition": "radiuscm*0.01", "description": "", "templateType": "anything"}, "speed": {"name": "speed", "group": "Ungrouped variables", "definition": "random(1..10#0.01)*10^7", "description": "", "templateType": "anything"}, "current": {"name": "current", "group": "Ungrouped variables", "definition": "random(0..2#0.01)+2", "description": "", "templateType": "anything"}, "hfield": {"name": "hfield", "group": "Ungrouped variables", "definition": "current*0.5/radius", "description": "", "templateType": "anything"}, "mu": {"name": "mu", "group": "Ungrouped variables", "definition": "4*10^-7*pi", "description": "", "templateType": "anything"}, "bfield": {"name": "bfield", "group": "Ungrouped variables", "definition": "mu*hfield", "description": "", "templateType": "anything"}, "force": {"name": "force", "group": "Ungrouped variables", "definition": "abs(decimal(speed*bfield*q))", "description": "

Force on the electron in fM

", "templateType": "anything"}, "q": {"name": "q", "group": "Ungrouped variables", "definition": "decimal(-1.6*10^-4)", "description": "

Charge on an electron in fC

", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["radiuscm", "radius", "speed", "current", "hfield", "mu", "bfield", "force", "q"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": true, "customName": "Field from a circular current", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Which of the following relative orientations of a current and the magnetic flux density its generated are consistent?

\n

\"Image

\n

", "minMarks": 0, "maxMarks": "2", "shuffleChoices": false, "displayType": "checkbox", "displayColumns": "4", "minAnswers": "1", "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["A", "B", "C", "D"], "matrix": ["1", "-1", "-1", "1"], "distractors": ["", "", "", ""]}, {"type": "gapfill", "useCustomName": true, "customName": "Formula", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the magnitude of the magnetic flux density at the centre of the loop?  Express your answer in terms of the radius of the loop, $R$, the current in the wire, $j$, and the permeability of free space $\\mu_0$ (mu_0).

\n

$|B|=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Formula", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "mu_0 j/(2R)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "j", "value": ""}, {"name": "mu_0", "value": ""}, {"name": "r", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Force", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The magnitude of the force on a moving charge at the centre of the loop is 

\n

$|\\vec{F}|=|qu\\vec{B}|$

\n

where $q$ is the amount of charge, and $u$ is the speed it is moving (the component of the velocity in the plane of the loop).

\n

If an electron is moving with $u=${speed} m/s, $j=${current} A and the radius of the loop is $R=${radiuscm} cm, what is the force the electron experiences?

\n

$|F|=$[[0]] femto-Newtons

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "force", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "force*0.99", "maxValue": "force*1.01", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}]}]}], "contributors": [{"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}]}