// Numbas version: finer_feedback_settings {"name": "Basics of magnetic fields arising in the vicinity of a current in a wire.", "extensions": [], "custom_part_types": [], "resources": [["question-resources/current_clock.png", "/srv/numbas/media/question-resources/current_clock.png"], ["question-resources/current_anti.png", "/srv/numbas/media/question-resources/current_anti.png"], ["question-resources/current_mixed.png", "/srv/numbas/media/question-resources/current_mixed.png"], ["question-resources/current_angled_anti.png", "/srv/numbas/media/question-resources/current_angled_anti.png"], ["question-resources/current_angled_clock.png", "/srv/numbas/media/question-resources/current_angled_clock.png"], ["question-resources/current_no_direction.png", "/srv/numbas/media/question-resources/current_no_direction.png"], ["question-resources/current_spiral.png", "/srv/numbas/media/question-resources/current_spiral.png"], ["question-resources/wireandelectron.png", "/srv/numbas/media/question-resources/wireandelectron.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Basics of magnetic fields arising in the vicinity of a current in a wire.", "tags": [], "metadata": {"description": "Some equations, some vectors and some calculations.", "licence": "All rights reserved"}, "statement": "

A long, straight wire is known to give rise to a magnetizing field and magnetic flux. 

\n

When providing numerical answers you may express them using scientific notation.  Express values to four significant figures and use the values of physical constants as provided in the course notes.

", "advice": "

The field from a long straight wire is given by the formula

\n

$\\displaystyle \\left|\\vec{B}\\right|= {\\mu j\\over 2\\pi r}$,

\n

and it circulates according to the right-hand screw rule.  Therefore the flux deminishes in magnitude as $1/r$ and circulates clock-wise as seen along the line of the wire looking in the direction of the current.

\n

The magnetising field strength is related to the magnetic flux density by

\n

$\\displaystyle \\vec{B}=\\mu\\vec{H}=\\mu_r\\mu_0\\vec{H}$

\n

so in the air (which essentially is the same as vacuum so far as magnetic fields are concerned), 

\n

$\\displaystyle \\left|\\vec{H}\\right|={j\\over 2\\pi r}$ and $\\displaystyle \\left|\\vec{B}\\right|={\\mu_0 j\\over 2\\pi r}$

\n

where $\\mu_0=4\\pi\\times10^{-7}$ T.m/A.

\n

When there is a permeable piece of material placed so that the point of interest is no longer in air, we have to take the new relative permeability into account.  This changes only the magnetic flux density - it has no impact upon the magnetising field strength - so that 

\n

$\\displaystyle \\left|\\vec{H}\\right|={j\\over 2\\pi r}$ and $\\displaystyle \\left|\\vec{B}\\right|={\\mu_0 \\mu_r j\\over 2\\pi r}$

", "rulesets": {}, "extensions": [], "variables": {"bfield": {"name": "bfield", "group": "Ungrouped variables", "definition": "0.5*mu0*current/(2 pi distance)*1000000", "description": "

Flux density at the electron, T.

", "templateType": "anything"}, "current": {"name": "current", "group": "Ungrouped variables", "definition": "random(0..5#0.1)*0.1+0.5", "description": "

Current in the wire, Amps.

", "templateType": "anything"}, "distancecm": {"name": "distancecm", "group": "Ungrouped variables", "definition": "random(0..1#0.1)*0.1+0.1", "description": "

Distance of the moving electron from the wire, mm

", "templateType": "anything"}, "distance": {"name": "distance", "group": "Ungrouped variables", "definition": "distancecm/100", "description": "

Distance of the moving electron from the wire, m

", "templateType": "anything"}, "mu0": {"name": "mu0", "group": "Ungrouped variables", "definition": "pi*4*10^-7", "description": "

Permeability of free space, H/m

", "templateType": "anything"}, "hfield": {"name": "hfield", "group": "Ungrouped variables", "definition": "current*0.5/pi/distance", "description": "", "templateType": "anything"}, "mur": {"name": "mur", "group": "Ungrouped variables", "definition": "random(50..200#0.1)", "description": "

Relative permeability of iron close to the wire.

", "templateType": "anything"}, "millicurrent": {"name": "millicurrent", "group": "Ungrouped variables", "definition": "current*1000", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["bfield", "current", "distance", "distancecm", "mu0", "hfield", "mur", "millicurrent"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": true, "customName": "Schematic", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Which of the following diagrams best illustrates the direction of the magnetic flux arising from a current of {current} A into the page?

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "6", "showCellAnswerState": true, "choices": ["", "", "", "", "", ""], "matrix": [0, 0, 0, 0, "0", "4"], "distractors": ["Although charged particles may have a helical path in a field, the field itself is not spiral.", "There are no directions indicated here - it cannot be correct.", "No - the wire has cylindrical symmetry, therefore so must the the field.", "No - the wire has cylindrical symmetry, therefore so must the the field.", "No - this direction of the field follows the right-hand screw rule for the current out of the page.", "Yes - this follows the right-hand screw rule for the current into the page."]}, {"type": "gapfill", "useCustomName": true, "customName": "Flux density", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Enter into the box below the expression for the magnitude of the magnetic flux density a distance $d$ metres from a long, straight wire in air.  You may use $\\mu$ (mu) for permeability of air, $\\epsilon$ (epsilon) for the permittivity of air, $A$ for the cross-sectional area of the wire and $j$ for magnitude of current. 

\n

$\\displaystyle\\left|\\vec{B}\\right|=$ [[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "B formula", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "mu j /(2 pi d)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "d", "value": ""}, {"name": "j", "value": ""}, {"name": "mu", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Magnetising field strength", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the magnitude of the magnetizing field strength a distance {distancecm} cm from a long straight wire carrying a constant current of {millicurrent} milli-amps.

\n

$\\displaystyle \\left|\\vec{H}\\right|=$[[0]] A/m

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Hfield", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "hfield*0.999", "maxValue": "hfield*1.001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Magnetic flux density", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the magnitude of the magnetic flux density if measured at twice the distance from the wire as that used for the determination of the magnetizing field strength in the previous part?

\n

$\\displaystyle\\left|\\vec{B}\\right|=$[[0]] μT

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Bfield", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "bfield*0.999", "maxValue": "bfield*1.001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Iron", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

A piece of magnetically permeable material is placed so that the point at which you have evaluated the magnitudes of both of the magnetic fields lies within it.  If the relative magnetic permeability of the medium is {mur}, calculate new values for the two fields:

\n

$\\displaystyle \\left |\\vec{H}\\right|=$[[0]] A/m

\n

$\\displaystyle \\left|\\vec{B}\\right|=$[[1]] T

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "New H", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "hfield*0.999", "maxValue": "hfield*1.001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "New B", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "bfield*mur*0.999/1000000", "maxValue": "bfield*mur*1.001/1000000", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "George Stagg", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/930/"}, {"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}]}]}], "contributors": [{"name": "George Stagg", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/930/"}, {"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}]}