// Numbas version: finer_feedback_settings {"name": "Field and force on a charge in the centre of of a wire loop", "extensions": [], "custom_part_types": [], "resources": [["question-resources/Picture_1_KeCQXYx.png", "/srv/numbas/media/question-resources/Picture_1_KeCQXYx.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Field and force on a charge in the centre of of a wire loop", "tags": [], "metadata": {"description": "

Field and force (no prior knowledge required for the force)

", "licence": "All rights reserved"}, "statement": "

For this question we will look at the case of a single loop of wire carring a constant current. Althought diagrams show the wires entering and leaving the loop at different points, assume that this gap is effectively zero in magnitude for the purposes of the analysis.

\n

When providing numerical answers you may express them using scientific notation.  Express values to four significant figures and use the values of physical constants as provided in the course notes.

", "advice": "

The field at the centre of a circular current loop has a magnitude $H=j/2R$, where $j$ is the current and $R$ is the radius of the loop.  The direction can be found using the right-hand screw rule: grab the wire with your right hand so that the thumb points along the direction of the current.  The field circulates around the wire in the direction that your fingers are pointing.

\n

The expression for the force provided in the question is the magnetic term in the Lorentz force.  You're told that it's an electron moving which means $q=-1.6\\times10^{-19}$C, and the formula for $B$ is what's required for the preceding step, i.e. 

\n

$\\displaystyle |\\vec{B}|=\\mu_0|\\vec{H}|={\\mu_0j \\over 2R}\\Rightarrow|\\vec{F}|={eu\\mu_0j \\over 2R}$

\n

You're also given the direction of the force in terms of the cross-product and order of the variables.  The force is in the direction perpendicular to both the field (which is along $z$, as given in the question), and the velocity.  The cross-product is a right handed rule so we can determine the direction of $\\vec{u}\\times\\vec{B}$ in a straight forward way.  We must also note that it's an electron, which is negatively charged, so the direction is then reversed.

\n

The simplest approach is to write down the componentof $q\\vec{u}$ and $\\vec{B}$ in a determinant form and this will keep the orientations correctly specified.

\n

As a note, the force of {precround(forcef,4)} fN determined in this case seems rediculously small and essentially zero, but we have to note that the electron also has a very small mass (order $10^{-30}$kg), so it will result in a very high acceleration!

", "rulesets": {}, "extensions": [], "variables": {"radiuscm": {"name": "radiuscm", "group": "Ungrouped variables", "definition": "random(1..5#0.1)", "description": "", "templateType": "anything"}, "radius": {"name": "radius", "group": "Ungrouped variables", "definition": "radiuscm*0.01", "description": "", "templateType": "anything"}, "xspeed": {"name": "xspeed", "group": "Ungrouped variables", "definition": "random(-1001..1001#2)*10^5", "description": "", "templateType": "anything"}, "current": {"name": "current", "group": "Ungrouped variables", "definition": "random(0..2#0.01)+2", "description": "", "templateType": "anything"}, "hfield": {"name": "hfield", "group": "Ungrouped variables", "definition": "current*0.5/radius", "description": "", "templateType": "anything"}, "mu": {"name": "mu", "group": "Ungrouped variables", "definition": "4*10^-7*pi", "description": "", "templateType": "anything"}, "bfield": {"name": "bfield", "group": "Ungrouped variables", "definition": "mu*hfield", "description": "", "templateType": "anything"}, "xforcef": {"name": "xforcef", "group": "Ungrouped variables", "definition": "decimal(yspeed*bfield*q)", "description": "", "templateType": "anything"}, "q": {"name": "q", "group": "Ungrouped variables", "definition": "decimal(-1.6*10^-4)", "description": "

Charge on a proton in femto coulombs

", "templateType": "anything"}, "yspeed": {"name": "yspeed", "group": "Ungrouped variables", "definition": "random(-1001..1001#2)*10^5", "description": "", "templateType": "anything"}, "yforcef": {"name": "yforcef", "group": "Ungrouped variables", "definition": "decimal(-1*xspeed*bfield*q)", "description": "", "templateType": "anything"}, "forcef": {"name": "forcef", "group": "Unnamed group", "definition": "sqrt(xforcef^2+yforcef^2)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["bfield", "current", "hfield", "mu", "q", "radius", "radiuscm", "xforcef", "xspeed", "yspeed", "yforcef"], "variable_groups": [{"name": "Unnamed group", "variables": ["forcef"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": true, "customName": "Field from a circular current", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Which of the following relative orientations of a current and the magnetic flux density its generated are consistent?  More than one case may apply, but note that incorrect selections will reduce the credit for this part (the minimum score is zero).

\n

\"Image

\n

", "minMarks": 0, "maxMarks": "4", "shuffleChoices": true, "displayType": "checkbox", "displayColumns": "4", "minAnswers": "1", "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["A", "B", "C", "D"], "matrix": ["2", "-2", "-2", "2"], "distractors": ["", "", "", ""]}, {"type": "gapfill", "useCustomName": true, "customName": "Formula", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The high-symmetry and time-independence of this case renders the formula for the mangetic fields generated at the centre of the loop straight foward to obtain.  Enter in the box below a formula for the magnitude of the magnetic flux density at the centre of the loop.  Express your answer in terms of the radius of the loop, $R$, the current in the wire, $j$, and the permeability of free space $\\mu_0$ (mu_0).  Take care to separate your variables with spaces and use brackets as appropriate to ensure that your formula is interpretted as you intend.

\n

$\\displaystyle\\left|\\vec{B}\\right|=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Formula", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "mu_0 j/(2R)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "j", "value": ""}, {"name": "mu_0", "value": ""}, {"name": "r", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Force", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

In an experiement, a current is flowing through a circular wire loop in the $xy$-plane with the centre of the loop at the origin. 

\n

An electron is introduced to the system at the centre of the loop with a velocity $\\vec{u}=(\\var{xspeed/1000000})\\hat{i}+(\\var{yspeed/1000000})\\hat{j}$ m/μs. The loop of wire carries a current of $j=\\var{current}$ Amps and has a radius of $R=\\var{radiuscm}$ cm. The direction of the current is such that the magnetic flux at the origin is directed along the positive $z$-direction.

\n

The force on a moving charge in a magnetic field is given by 

\n

$\\vec{F}=q\\vec{u}\\times\\vec{B}$

\n

where $q$ is the amount of charge, and $u$ is the velocity with which it is moving.

\n

Determine $x$, $y$ and $z$ components of the force that the electron experiences, expressed in femto-newtons.

\n

$\\vec{F}=$[[0]]$\\hat{i}+$[[1]]$\\hat{j}+$[[2]]$\\hat{k}$

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "F_x", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "xforcef*0.999", "maxValue": "xforcef*1.001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "F_y", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "yforcef*0.999", "maxValue": "yforcef*1.001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "F_z", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0", "maxValue": "0", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}]}]}], "contributors": [{"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}]}