// Numbas version: finer_feedback_settings {"name": "Q15_7", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Q15_7", "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

A tennis ball with a mass of {M} g and diameter of {D} mm is dropped in standard sea level air. 

\n

Consider $\\rho_{\\text{air}}$ = 1.2 kg/m$^3$, $\\mu_{\\text{air}}$ = 1.8 x 10$^{-5}$ N$\\cdot$s/m$^2$, and $g$ = 9.81 m/s$^2$.

", "advice": "", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"M": {"name": "M", "group": "Ungrouped variables", "definition": "random(50 .. 70#1)", "description": "", "templateType": "randrange", "can_override": false}, "D": {"name": "D", "group": "Ungrouped variables", "definition": "random(60 .. 80#1)", "description": "", "templateType": "randrange", "can_override": false}, "V": {"name": "V", "group": "Ungrouped variables", "definition": "sqrt(((M/1000)*g)/(0.5*rho_air*A*Cd))", "description": "", "templateType": "anything", "can_override": false}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "(1/(sqrt(g*k)))*arctanh(0.95*V*(sqrt(k/g)))", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "(1/k)*ln(cosh(sqrt(g*k)*t))", "description": "", "templateType": "anything", "can_override": false}, "A": {"name": "A", "group": "Ungrouped variables", "definition": "PI*((D/1000)^2)/4", "description": "", "templateType": "anything", "can_override": false}, "Cd": {"name": "Cd", "group": "Ungrouped variables", "definition": "0.4", "description": "", "templateType": "number", "can_override": false}, "rho_air": {"name": "rho_air", "group": "Ungrouped variables", "definition": "1.2", "description": "", "templateType": "anything", "can_override": false}, "nu_air": {"name": "nu_air", "group": "Ungrouped variables", "definition": "0.000018", "description": "", "templateType": "number", "can_override": false}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "9.81", "description": "", "templateType": "number", "can_override": false}, "Re": {"name": "Re", "group": "Ungrouped variables", "definition": "V*(D/1000)*rho_air/nu_air", "description": "", "templateType": "anything", "can_override": false}, "K": {"name": "K", "group": "Ungrouped variables", "definition": "(rho_air*A*Cd)/(2*(M/1000))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "10000Calculate the terminal velocity of the ball. 

\n

$V_t$ = [[0]]  m/s.

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{V}-{V}*0.02", "maxValue": "{V}+{V}*0.02", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Assuming as an approximation that the drag coefficient remains constant at its terminal velocity value, estimate the $\\textbf{time}$ and $\\textbf{distance}$ required for the ball to reach 95% of its terminal speed.

\n

$t$ = [[0]]  s.

\n

$X$ = [[1]]  m.

\n

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{t}-{t}*0.02", "maxValue": "{t}+{t}*0.02", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x}-{x}*0.02", "maxValue": "{x}+{x}*0.02", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Rasha Noufal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9929/"}]}]}], "contributors": [{"name": "Rasha Noufal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9929/"}]}