// Numbas version: finer_feedback_settings {"name": "INT3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "c", "b", "d", "s1", "m", "n", "r"], "name": "INT3", "tags": ["Calculus", "calculus", "constant of integration", "indefinite integration", "integrals", "integrating fractional powers", "integrating powers", "integration", "rebelmaths", "standard integrals", "Steps", "steps"], "advice": "\n\t \n\t \n\t
Using
\\[\\int \\;x^n\\;dx=\\frac{x^{n+1}}{n+1}+C\\] for any number $n \\neq -1$ we have
\\[\\begin{eqnarray*}\n\t \n\t \\simplify[std]{Int({c}*x^{m}+{d}*x ^ ({b} / {n}),x)} &=&\\simplify[std]{ ({c} / {m + 1}) * x ^ {m + 1} +{d}* x ^ ({b} / {n} + 1) / ({b} / {n} + 1) + C }\\\\\n\t \n\t &=&\\simplify[std]{ ({c} / {m + 1}) * x ^ {m + 1} + ({d*n} / {b + n}) * x ^ ({b + n} / {n}) + C}\n\t \n\t \\end{eqnarray*}\\]
$\\simplify[std]{f(x) = {c}x ^ {m} + {d}*x^({b}/{n})}$
\n\t\t\t$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]
\n\t\t\tInput all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.
\n\t\t\tClick on Show steps to get more information. You will not lose any marks by doing so.
\n\t\t\t \n\t\t\t", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"notallowed": {"message": "Input all numbers as integers or fractions and not decimals.
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "variableReplacements": [], "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "({c}/{m+1})x ^ {m+1} + ({d*n}/{b+n})*x^({n+b}/{n})+C", "marks": 3, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [1, 2]}], "steps": [{"prompt": "The indefinite integral of a power $x^n$ where $n\\neq -1$ is \\[\\int \\;x^n\\;dx=\\frac{x^{n+1}}{n+1}+C\\]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "marks": 0, "scripts": {}, "showCorrectAnswer": true, "type": "gapfill"}], "extensions": [], "statement": "\n\tIntegrate the following function $f(x)$.
\n\t
Input the constant of integration as $C$.
indefinite integration
\nFind $\\displaystyle \\int ax ^ m+ bx^{c/n}\\;dx$.
\nrebel
\nrebelmaths
\n", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "TEAME UCC", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/351/"}, {"name": "Gagan Aggarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/10312/"}]}]}], "contributors": [{"name": "TEAME UCC", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/351/"}, {"name": "Gagan Aggarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/10312/"}]}