// Numbas version: finer_feedback_settings {"name": "Simplifying Algebraic Fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["n1", "d1", "n2", "d2", "p", "p2"], "name": "Simplifying Algebraic Fractions", "tags": [], "preamble": {"css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}", "js": "document.createElement('fraction');\ndocument.createElement('numerator');\ndocument.createElement('denominator');"}, "advice": "", "rulesets": {"std": ["all"]}, "parts": [{"vsetrangepoints": 5, "prompt": "

$\\var{n1[0]}a^\\var{p[0]}b$$\\var{d1[0]}ab$  $=$

", "expectedvariablenames": ["p", "q", "a", "b"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "({n1[0]}*a^{{p[0]}-1})/{d1[0]}", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}, {"notallowed": {"message": "

Your answer must be fully simplified

", "showStrings": false, "strings": ["/"], "partialCredit": 0}, "vsetrangepoints": 5, "prompt": "

$p^\\var{p[1]}$$q$  $\\times$  $q^\\var{p[1]}$$p$  $=$

", "expectedvariablenames": ["q", "p"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "p^{{p[1]}-1}q^{{p[1]}-1}", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}, {"notallowed": {"message": "

Your answer must be fully simplified

", "showStrings": false, "strings": ["*"], "partialCredit": 0}, "vsetrangepoints": 5, "prompt": "

$\\var{n1[2]}a$$\\var{d1[2]}b^{\\var{p[2]}}$  $\\times$  $\\var{n2[2]}b^{\\var{p2[0]}}$$\\var{d2[2]}a^{\\var{p[4]}}$  $=$

", "expectedvariablenames": ["q", "p", "a", "b"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "({n1[2]}*{n2[2]}*b^{{p2[0]}-{p[2]}})/({d1[2]}*{d2[2]}*a^{{p[4]}-1})", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}, {"notallowed": {"message": "

Your answer must be fully simplified

", "showStrings": false, "strings": ["*"], "partialCredit": 0}, "vsetrangepoints": 5, "prompt": "

$\\var{n1[3]}a$$\\var{d1[3]}b^{\\var{p[3]}}$  $\\div$  $\\var{n2[3]}b^{\\var{p2[1]}}$$\\var{d2[3]}a^{\\var{p[5]}}$  $=$

", "expectedvariablenames": ["q", "p", "a", "b"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "({n1[3]}*{d2[3]}*a^{{p[5]}+1})/({d1[3]}*{n2[3]}*b^{{p2[1]}+{p[3]}})", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "statement": "

Express the following problems as single fractions, simplified as much as possible.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"p2": {"definition": "repeat(random(4..5),10)", "templateType": "anything", "group": "Ungrouped variables", "name": "p2", "description": ""}, "p": {"definition": "repeat(random(2..3),10)", "templateType": "anything", "group": "Ungrouped variables", "name": "p", "description": ""}, "n1": {"definition": "repeat(random(2..8),8)", "templateType": "anything", "group": "Ungrouped variables", "name": "n1", "description": ""}, "n2": {"definition": "repeat(random(2..8),8)", "templateType": "anything", "group": "Ungrouped variables", "name": "n2", "description": ""}, "d2": {"definition": "repeat(random(3..15),8)", "templateType": "anything", "group": "Ungrouped variables", "name": "d2", "description": ""}, "d1": {"definition": "repeat(random(3..15),8)", "templateType": "anything", "group": "Ungrouped variables", "name": "d1", "description": ""}}, "metadata": {"notes": "", "description": "

More work with dividing and multiplying algebraic fractions

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}]}]}], "contributors": [{"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}]}