// Numbas version: finer_feedback_settings {"name": "Factorisation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["c", "c2", "c3"], "name": "Factorisation", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {}, "parts": [{"vsetrangepoints": 5, "prompt": "
$\\var{c[0]}-\\var{c[1]}x^2=$
", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "2({c[0]}/2-{c[1]}/2x^2)", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Your answer must be factorised
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"vsetrangepoints": 5, "prompt": "$\\var{c[2]}ab+\\var{c[3]}bc=$
", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "2b*({c[2]}a/2+{c[3]}c/2)", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Your answer must be factorised
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"vsetrangepoints": 5, "prompt": "$\\var{c[4]}a^2+\\var{c[5]}ab=$
", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "2a*({c[4]}a/2+{c[5]}b/2)", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Your answer must be factorised
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"vsetrangepoints": 5, "prompt": "$pq^3-p^3q=$
", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "p*q*(q^2-p^2)", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Your answer must be factorised
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"vsetrangepoints": 5, "prompt": "$\\var{c2[0]}x^2y+\\var{c2[1]}xy^4=$
", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "3*x*y*({c2[0]}x/3+{c2[1]}y^3/3)", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Your answer must be factorised
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"vsetrangepoints": 5, "prompt": "$\\var{c3[0]}p^3q-\\var{c3[1]}p^2q^2+\\var{c3[2]}pq^3=$
", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "2*p*q*({c3[0]}p^2/2-{c3[1]}*p*q/2+{c3[2]}q^2/2)", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Your answer must be factorised
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"vsetrangepoints": 5, "prompt": "$\\var{c2[2]}lm^2-\\var{c2[3]}l^3m^3+\\var{c2[4]}l^2m^4=$
", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "3*l*m^2*({c2[2]}/3-{c2[3]}*l^2*m/3+{c2[4]}l*m^2/3)", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Your answer must be factorised
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}], "statement": "Factorise the following expressions by taking out the highest common factor.
\nMake sure you input an asterisk (*) for multiplication wherever necessary.
\nFor example, $xy$ should be written as $x*y$, and $a(b+c)$ should be written as $a*(b+c)$.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"c3": {"definition": "shuffle([2,4,6,10,14])[0..3]", "templateType": "anything", "group": "Ungrouped variables", "name": "c3", "description": "Part f (HCF:2)
"}, "c2": {"definition": "shuffle([3,3,6,9,15])[0..5]", "templateType": "anything", "group": "Ungrouped variables", "name": "c2", "description": "Coefficients in e,f (HCF: 3)
"}, "c": {"definition": "shuffle([2,2,6,8,10,14])", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": "Coefficients in a,b,c (HCF: 2)
"}}, "metadata": {"notes": "", "description": "Factorising polynomials using the highest common factor
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}]}]}], "contributors": [{"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}]}