// Numbas version: exam_results_page_options {"name": "Differentiation 3 - Basic Polynomial Expressions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["ac", "bc", "cc", "dc", "d"], "name": "Differentiation 3 - Basic Polynomial Expressions", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "

If you do not understand how to carry out these problems, please go back to 'Differentiation 1- Basic Polynomial Expressions'.

", "rulesets": {}, "parts": [{"vsetrangepoints": 5, "prompt": "

\$\\simplify[all,fractionnumbers]{{ac[0]}x^{3/2}+{bc[0]}x^{1/2}+{cc[0]}x^{-1/2}+{dc[0]}x}\$

", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "(3{ac[0]}/2)*x^(1/2)+({bc[0]}/2)*x^(-1/2)+(-{cc[0]}/2)*x^(-3/2)+{dc[0]}", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"vsetrangepoints": 5, "prompt": "

\$\\simplify[all,fractionnumbers]{{ac[1]}/{d[0]}x^{3/2}+{bc[1]}/{d[1]}x^{1/2}+{cc[1]}/{d[2]}x^{-1/2}+{dc[1]}/{d[3]}x}\$

", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "(3{ac[1]}/(2{d[0]}))*x^(1/2)+({bc[1]}/(2{d[1]}))*x^(-1/2)+(-{cc[1]}/(2{d[2]}))*x^(-3/2)+{dc[1]}/{d[3]}", "marks": "3", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"vsetrangepoints": 5, "prompt": "

\$\\simplify[all,fractionnumbers]{{ac[2]}/{d[4]}x^{3/2}+{bc[2]}/{d[5]}x^{1/2}+{cc[2]}/{d[6]}x^{-1/2}+{dc[2]}/{d[7]}x}\$

", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "(3{ac[2]}/(2{d[4]}))*x^(1/2)+({bc[2]}/(2{d[5]}))*x^(-1/2)+(-{cc[2]}/(2{d[6]}))*x^(-3/2)+{dc[2]}/{d[7]}", "marks": "3", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "statement": "

Differentiate the following polynomials.

\n

Note: some questions may not include all the possible terms.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"cc": {"definition": "repeat(random(-10..10),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "cc", "description": ""}, "ac": {"definition": "repeat(random(-3..3),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "ac", "description": ""}, "d": {"definition": "repeat(random(1..9),8)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "dc": {"definition": "repeat(random(-30..30),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "dc", "description": ""}, "bc": {"definition": "repeat(random(-10..10),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "bc", "description": ""}}, "metadata": {"notes": "", "description": "

More work on differentiation with fractional coefficients and powers

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}]}]}], "contributors": [{"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}]}