// Numbas version: finer_feedback_settings {"name": "Understanding $\\sum$ notation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["upsum", "coeff", "pow", "low"], "name": "Understanding $\\sum$ notation", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "

a) $(1/2)*\\var{upsum[0]}*\\var{coeff[0]}*(1+\\var{upsum[0]})$, here we used that the sum of the first $n$ terms in an arithmetic sequence is $\\frac{n(a+l)}{2}$ where $a$ is the first term and $l$ is the $n$th term. We use this formula for b), d) and e) too.

\n

For the questions involving powers, recall the useful formulae:

\n
    \n
  1. The sum of the first n square numbers is equal to 
  2. \n
  3. The sum of the first n cubic numbers is equal to 
  4. \n
\n

In some questions it will be helpful to note that $\\sum\\limits_{n=5}^{10}f(n)=\\sum\\limits_{n=1}^{10}f(n)-\\sum\\limits_{n=1}^{4}f(n)$

", "rulesets": {}, "parts": [{"prompt": "

$\\sum\\limits_{n=1}^\\var{upsum[0]} \\var{coeff[0]}n$

", "allowFractions": false, "variableReplacements": [], "maxValue": "(1/2)*{upsum[0]}*{coeff[0]}*(1+{upsum[0]})", "minValue": "(1/2)*{upsum[0]}*{coeff[0]}*(1+{upsum[0]})", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"prompt": "

$\\sum\\limits_{n=0}^\\var{upsum[1]} (n+\\var{coeff[1]})$

", "allowFractions": false, "variableReplacements": [], "maxValue": "(1/2)*{upsum[1]+1}*(2*{coeff[1]}+{upsum[1]})", "minValue": "(1/2)*{upsum[1]+1}*(2*{coeff[1]}+{upsum[1]})", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"prompt": "

$\\sum\\limits_{n=1}^\\var{low[0]} n^3$

", "allowFractions": false, "variableReplacements": [], "maxValue": "(1/4)*({low[0]}^2)*(({low[0]}+1)^2)", "minValue": "(1/4)*({low[0]}^2)*(({low[0]}+1)^2)", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"prompt": "

$\\sum\\limits_{n=1}^\\var{upsum[2]} n$

", "allowFractions": false, "variableReplacements": [], "maxValue": "(1/2)*{upsum[2]}*({upsum[2]}+1)", "minValue": "(1/2)*{upsum[2]}*({upsum[2]}+1)", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"prompt": "

$\\sum\\limits_{n=4}^{\\simplify{{upsum[1]}+2}} (\\var{coeff[2]}n-\\var{coeff[3]})$

", "allowFractions": false, "variableReplacements": [], "maxValue": "(1/2)*({upsum[1]}-1)*(2*(4*{coeff[2]}-{coeff[3]})+({upsum[1]}-2)*{coeff[2]})", "minValue": "(1/2)*({upsum[1]}-1)*(2*(4*{coeff[2]}-{coeff[3]})+({upsum[1]}-2)*{coeff[2]})", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"prompt": "

$\\sum\\limits_{n=\\var{low[2]}}^\\var{upsum[2]} n^2$

", "allowFractions": false, "variableReplacements": [], "maxValue": "((1/6)*({upsum[2]})*(({upsum[2]}+1))*((2*{upsum[2]}+1)))-((1/6)*({low[2]})*(({low[2]}-1))*((2*{low[2]}-1)))", "minValue": "((1/6)*({upsum[2]})*(({upsum[2]}+1))*((2*{upsum[2]}+1)))-((1/6)*({low[2]})*(({low[2]}-1))*((2*{low[2]}-1)))", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"prompt": "

$\\sum\\limits_{n=\\var{low[1]}}^\\var{upsum[3]} n(n+1)$

", "allowFractions": false, "variableReplacements": [], "maxValue": "((1/6)*({upsum[3]})*(({upsum[3]}+1))*((2*{upsum[3]}+1)))-((1/6)*({low[1]})*(({low[1]}-1))*((2*{low[1]}-1))) + (1/2)*({upsum[3]})*({upsum[3]}+1) - (1/2)*({low[1]})*({low[1]}-1)", "minValue": "((1/6)*({upsum[3]})*(({upsum[3]}+1))*((2*{upsum[3]}+1)))-((1/6)*({low[1]})*(({low[1]}-1))*((2*{low[1]}-1))) + (1/2)*({upsum[3]})*({upsum[3]}+1) - (1/2)*({low[1]})*({low[1]}-1)", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "statement": "

Evaluate each of these

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"pow": {"definition": "shuffle(2..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "pow", "description": ""}, "coeff": {"definition": "shuffle(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "coeff", "description": ""}, "upsum": {"definition": "shuffle(5..8)", "templateType": "anything", "group": "Ungrouped variables", "name": "upsum", "description": ""}, "low": {"definition": "shuffle(2..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "low", "description": ""}}, "metadata": {"notes": "", "description": "", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "joshua boddy", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/557/"}]}]}], "contributors": [{"name": "joshua boddy", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/557/"}]}