// Numbas version: exam_results_page_options {"name": "Integration with Partial Fractions 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "c", "b", "d", "nb", "a1", "a2", "s1", "a_", "c_", "b_", "d_", "nb_", "a1_", "a2_", "s1_", "i1", "i0"], "name": "Integration with Partial Fractions 2", "tags": ["algebra", "algebraic fractions", "algebraic manipulation", "combining algebraic fractions", "common denominator"], "preamble": {"css": "", "js": ""}, "advice": "

a)

\n

We use partial fractions to find $A$ and $B$ such that: 
\\[ \\simplify[std]{({a*a2+c*a1}*x+{c*b+a*d})/(({a1}x +{b})*({a2}x+{d}))} \\;\\;\\;=\\simplify[std]{ A/({a1}x+{b})+B/({a2}x+{d})}\\]

\n

Dividing both sides of the equation by $\\displaystyle \\simplify[std]{1/( ({a1}x+{b})({a2}x+{d}) )}\\;\\;$ we obtain:

\n

$\\simplify[std]{A*({a2}x+{d})+B*({a1}x+{b}) = {a*a2+c*a1}*x+{a*d+c*b}} \\Rightarrow \\simplify[std]{({a2}A+{a1}B)*x+{d}*A+{b}*B={a*a2+c*a1}*x+{a*d+c*b}}$

\n

Identifying coefficients:

\n

Constant term: $\\simplify[std]{ {d}*A+{b}*B={a*d+c*b} }$

\n

Coefficent $x$: $ \\simplify[std]{ {a2}A+{a1}B = {a*a2+c*a1} }$ 

\n

On solving these equations we obtain $A = \\var{a}$ and $B=\\var{c}$

\n

Which gives:\\[ \\simplify[std]{({a*a2+c*a1}*x+{c*b+a*d})/(({a1}x +{b})*({a2}x+{d}))}\\;\\;= \\simplify[std]{{a}/({a1}x+{b})+{c}/({a2}x+{d})}\\]

\n

Integration:

\n

For the integration, we use our answer for the partial fractions to help use and then recall that $\\int \\frac{1}{x+a}\\mathrm{d}x = \\ln(x+a)$

\n

Hence we apply this to our problem to find $\\int \\simplify{({a*a2 +  c*a1} * x + {a * d +  c * b})/ (({a1}*x + {b}) * ({a2}*x + {d}))} \\mathrm{d}x = \\simplify{({a}/{a1})*ln({a1}x+{b}) + ({c}/{a2})*ln({a2}x+{d})}$

\n

b)

\n

We use partial fractions to find $A$ and $B$ such that: 
\\[ \\simplify[std]{({a_*a2_+c_*a1_}*x+{c_*b_+a_*d_})/(({a1_}x +{b_})*({a2_}x+{d_}))} \\;\\;\\;=\\simplify[std]{ A/({a1_}x+{b_})+B/({a2_}x+{d_})}\\]

\n

Dividing both sides of the equation by $\\displaystyle \\simplify[std]{1/( ({a1_}x+{b_})({a2_}x+{d_}) )}\\;\\;$ we obtain:

\n

$\\simplify[std]{A*({a2_}x+{d_})+B*({a1_}x+{b_}) = {a_*a2_+c_*a1_}*x+{a_*d_+c_*b_}} \\Rightarrow \\simplify[std]{({a2_}A+{a1_}B)*x+{d_}*A+{b_}*B={a_*a2_+c_*a1_}*x+{a_*d_+c_*b_}}$

\n

Identifying coefficients:

\n

Constant term: $\\simplify[std]{ {d_}*A+{b_}*B={a_*d_+c_*b_} }$

\n

Coefficent $x$: $ \\simplify[std]{ {a2_}A+{a1_}B = {a_*a2_+c_*a1_} }$ 

\n

On solving these equations we obtain $A = \\var{a_}$ and $B=\\var{c_}$

\n

Which gives:\\[ \\simplify[std]{({a_*a2_+c_*a1_}*x+{c_*b_+a_*d_})/(({a1_}x +{b_})*({a2_}x+{d_}))}\\;\\;= \\simplify[std]{{a_}/({a1_}x+{b_})+{c_}/({a2_}x+{d_})}\\]

\n

Integration:

\n

For the integration, we use our answer for the partial fractions to help use and then recall that $\\int \\frac{1}{x+a}\\mathrm{d}x = \\ln(x+a)$

\n

Hence we apply this to our problem to find $\\int \\simplify{({a_*a2_ +  c_*a1_} * x + {a_ * d_ +  c_ * b_})/ (({a1_}*x + {b_}) * ({a2_}*x + {d_}))} \\mathrm{d}x = \\simplify{({a_}/{a1_})*ln({a1_}x+{b_}) + ({c_}/{a2_})*ln({a2_}x+{d_})} $

\n

We can then evaluate $\\int^\\var{i1}_\\var{i0} \\simplify{({a_*a2_ +  c_*a1_} * x + {a_ * d_ +  c_ * b_})/ (({a1_}*x + {b_}) * ({a2_}*x + {d_}))} \\mathrm{d}x$ by simply subbing in the appropriate limits to our answer above

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "

Split \\[\\simplify{({a*a2 +  c*a1} * x + {a * d +  c * b})/ (({a1}*x + {b}) * ({a2}*x + {d}))}\\] into partial fractions.

\n

Input the partial fractions here: [[0]].

\n

Hence evaluate $\\int \\simplify{({a*a2 +  c*a1} * x + {a * d +  c * b})/ (({a1}*x + {b}) * ({a2}*x + {d}))} \\mathrm{d}x =$[[1]]

\n

(You may assume that the constant on integration is 0)

\n

\n

 

\n

 

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"notallowed": {"message": "

Input as the sum of partial fractions.

", "showStrings": false, "strings": [")(", ")*("], "partialCredit": 0}, "vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 1e-05, "vsetrange": [10, 11], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{a} / ({a1}*x + {b}) + ({c} / ({a2}*x + {d}))", "marks": 2, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "({a}/{a1})*ln({a1}x+{b}) + ({c}/{a2})*ln({a2}x+{d})", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Split \\[\\simplify{({a_*a2_ +  c_*a1_} * x + {a_ * d_ +  c_ * b_})/ (({a1_}*x + {b_}) * ({a2_}*x + {d_}))}\\] into partial fractions.

\n

Input the partial fractions here: [[0]]

\n

Hence evaluate $\\int^\\var{i1}_\\var{i0} \\simplify{({a_*a2_ +  c_*a1_} * x + {a_ * d_ +  c_ * b_})/ (({a1_}*x + {b_}) * ({a2_}*x + {d_}))} \\mathrm{d}x =$[[1]]

\n

 

\n

 

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"notallowed": {"message": "

Input as the sum of partial fractions.

", "showStrings": false, "strings": [")(", ")*("], "partialCredit": 0}, "vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 1e-05, "vsetrange": [10, 11], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{a_} / ({a1_}*x + {b_}) + ({c_} / ({a2_}*x + {d_}))", "marks": 2, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "(({a_}/{a1_})*ln({a1_}{i1} + {b_}) + ({c_}/{a2_})*ln({a2_}{i1} + {d_}))-(({a_}/{a1_})*ln({a1_}{i0} + {b_}) + ({c_}/{a2_})*ln({a2_}{i0} + {d_}))", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "\n

 

\n

 

\n ", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "a1", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "-a2", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(1..9 except 0)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "nb_": {"definition": "if(c_<0,'taking away','adding')", "templateType": "anything", "group": "Ungrouped variables", "name": "nb_", "description": ""}, "d": {"definition": "random(1..9 except [0,round(b*a2/a1)])", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "i1": {"definition": "random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "i1", "description": ""}, "i0": {"definition": "floor(i1/2)", "templateType": "anything", "group": "Ungrouped variables", "name": "i0", "description": ""}, "nb": {"definition": "if(c<0,'taking away','adding')", "templateType": "anything", "group": "Ungrouped variables", "name": "nb", "description": ""}, "a2_": {"definition": "1", "templateType": "anything", "group": "Ungrouped variables", "name": "a2_", "description": ""}, "a1": {"definition": " 1", "templateType": "anything", "group": "Ungrouped variables", "name": "a1", "description": ""}, "d_": {"definition": "random(1..9 except [0,round(b_*a2_/a1_)])", "templateType": "anything", "group": "Ungrouped variables", "name": "d_", "description": ""}, "a2": {"definition": "1", "templateType": "anything", "group": "Ungrouped variables", "name": "a2", "description": ""}, "c_": {"definition": "-a2_", "templateType": "anything", "group": "Ungrouped variables", "name": "c_", "description": ""}, "s1_": {"definition": "if(c_<0,-1,1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s1_", "description": ""}, "b_": {"definition": "random(1..9 except 0)", "templateType": "anything", "group": "Ungrouped variables", "name": "b_", "description": ""}, "a1_": {"definition": "1", "templateType": "anything", "group": "Ungrouped variables", "name": "a1_", "description": ""}, "a_": {"definition": "a1_", "templateType": "anything", "group": "Ungrouped variables", "name": "a_", "description": ""}, "s1": {"definition": "if(c<0,-1,1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s1", "description": ""}}, "metadata": {"notes": "\n \t\t \t\t

5/08/2012:

\n \t\t \t\t

Added tags.

\n \t\t \t\t

Added description.

\n \t\t \t\t

Changed to two questions, for the numerator and denomimator, rather than one as difficult to trap student input for this example. Still some ambiguity however.

\n \t\t \t\t

12/08/2012:

\n \t\t \t\t

Back to one input of a fraction and trapped input in Forbidden Strings.

\n \t\t \t\t

Used the except feature of ranges to get non-degenerate examples.

\n \t\t \t\t

Checked calculation.OK.

\n \t\t \t\t

Improved display in content areas.

\n \t\t \n \t\t", "description": "

Split $\\displaystyle \\frac{b}{(cx + d)(px+q)}$ into partial fractions.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "joshua boddy", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/557/"}]}]}], "contributors": [{"name": "joshua boddy", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/557/"}]}