// Numbas version: finer_feedback_settings {"name": "Kirchoff's Laws", "extensions": [], "custom_part_types": [], "resources": [["question-resources/kirchoffs1stlawquestion.png", "/srv/numbas/media/question-resources/kirchoffs1stlawquestion.png"], ["question-resources/kirchoffs_1st_law_second_question.png", "/srv/numbas/media/question-resources/kirchoffs_1st_law_second_question.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Kirchoff's Laws", "tags": [], "metadata": {"description": "
Basic circuit analysis
", "licence": "All rights reserved"}, "statement": "Analyse the current in the branches using Kirchoff's laws.
", "advice": "a) Using Kirchoff's 1st Law: \\[Total\\:I_{in} = Total\\:I_{out}\\\\ 2\\,A +1\\,A = I_{out} + 0.5\\,A\\\\ I_{out} = 2.5\\,A\\]
\nb) The potential difference across all the parallel branches are the same. Therefore, we can write:\\[I_0\\,R = 2I_1\\,R\\:\\text{and}\\:I_0\\,R= 6I_2\\,R\\\\\\ I_0 = 2I_1\\:\\text{and}\\:I_0=6I_2\\].
\nUsing Kirchoff's first law at the first junction we can obtain the following relation:\\[I_0+I_1+I_2=3\\,A\\\\ I_0 + \\frac{1}{2}I_0 + \\frac{1}{6}I_0=3\\,A\\ \\\\ \\frac{10}{6}I_0=3\\,A\\\\ I_0=1.8\\,A\\].
\nTherefore, $I_1 = \\frac{1}{2}\\times1.8=0.9\\,A$ and $I_2=\\frac{1}{6}\\times1.8=0.3\\,A$.
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\nDetermine the unknown current, Iout, using Kirchoff's 1st Law.
\n[[0]] A
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "2.5", "maxValue": "2.5", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\nDetermine the three unknown currents, $I_0,\\,I_1\\,\\text{and}\\,I_2$., in Amperes (A).
\n$I_0=$[[0]]A, $I_1=$ [[1]] A and $I_2=$[[2]] A.
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "1.8", "maxValue": "1.8", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0.9", "maxValue": "0.9", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0.3", "maxValue": "0.3", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Madhava Krishna Prasad", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/11576/"}]}]}], "contributors": [{"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Madhava Krishna Prasad", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/11576/"}]}