// Numbas version: finer_feedback_settings {"name": "Integration by parts 3 - exponential", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "c", "b", "d", "s2", "s1"], "name": "Integration by parts 3 - exponential", "tags": ["Calculus", "calculus", "constant of integration", "indefinite integration", "integrals", "integrating", "integrating trigonometric functions", "integration by parts", "steps", "Steps", "twice"], "advice": "
\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]
\nWe choose $u = \\simplify[std]{({a}x)}$ and $\\displaystyle \\frac{dv}{dx} = \\simplify[std]{e^({c}x)}$.
\nSo $\\displaystyle \\frac{du}{dx} = \\simplify[std]{{a}}$ and $\\displaystyle v = \\simplify[std]{(1/{c})*e^({c}x)}$.
\nHence,
\\[ \\begin{eqnarray} \\int \\simplify[std]{({a}*x)*e^({c}*x)} dx &=& uv - \\int v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{(({a}*x)/{c})*e^({c}*x) - ({a}/{c})*Int(e^({c}*x),x)} \\\\ &=& \\simplify[std]{(({a}x)/{c})*e^({c}*x) -({a}/{c^2})*e^({c}*x) + C} \\end{eqnarray} \\]
$I=\\displaystyle \\int \\simplify[std]{({a}x)*e^({c}x)} dx $
\nThe formula for integration by parts is
\n\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]
\nWhat is the most suitable choice for $u$ and $\\frac{dv}{dx}$?
\n$u =\\;$[[0]]
\n$\\frac{dv}{dx} =\\;$[[1]]
\n", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{a}x", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "e^({c}x)", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "Hence find $\\frac{du}{dx} =\\;$[[0]]
\n$v =\\;$[[1]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{a}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "1/{c}e^({c}x)", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "Hence find $uv =\\;$[[0]]
\n$\\int v\\frac{du}{dx}\\mathrm{d}x = \\;$[[1]]$+C$
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{a}x/{c}e^({c}x)", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{a}/{c}^2e^({c}x)", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "Use the results from above to find:
\n$I=\\displaystyle \\int \\simplify[std]{({a}x)*e^({c}x)} dx = \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx = \\;$[[0]]$+C$
\nInput all numbers as fractions or integers and not decimals.
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"notallowed": {"message": "Do not input numbers as decimals, only as integers without the decimal point, or fractions
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "variableReplacements": [], "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{a}x/{c}e^({c}x)-{a}/{c}^2e^({c}x)", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Find the following indefinite integral.
\nInput all numbers as fractions or integers and not decimals.
\nInput the constant of integration as $C$.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "s1*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "s2*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "s2": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s2", "description": ""}, "s1": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s1", "description": ""}}, "metadata": {"notes": "\n \t\t \t\t3/08/2012:
\n \t\t \t\tAdded tags.
\n \t\t \t\tAdded description.
\n \t\t \t\tGot rid of redundant ruleset, added !noLeadingMinus to std ruleset as we need to keep the standard order for integrating by parts.
\n \t\t \t\tChecked calculation. OK.
\n \t\t \t\tPenalised use of steps in first part, 1 mark. Added message to that effect in first part.
\n \t\t \t\tAdded message about not inputting decimals in appropriate places.
\n \t\t \t\tChanged marks reflecting the use of steps and degree of difficulty in second part.
\n \t\t \t\tImproved Advice display.
\n \t\t \n \t\t", "description": "Find $\\displaystyle \\int (ax)e^{cx}\\; dx $
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "joshua boddy", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/557/"}]}]}], "contributors": [{"name": "joshua boddy", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/557/"}]}