// Numbas version: finer_feedback_settings {"name": "Integration by parts 1 with limits", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["s3", "c", "b", "m", "i1", "i0"], "name": "Integration by parts 1 with limits", "tags": ["algebraic manipulation", "Calculus", "calculus", "indefinite integration", "integrals", "integration", "integration by parts", "steps", "Steps"], "advice": "
The formula for integrating by parts is
\n\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]
\nWe choose $u = x$ and $\\displaystyle \\frac{dv}{dx} = \\simplify[std]{({b}*x+{c})^{m}}$.
\nSo $\\displaystyle \\frac{du}{dx}$ = $1$ and $\\displaystyle v = \\simplify[std]{(1/{(m+1)*b})*({b}*x+{c})^{m+1}}$.
\nHence,
\\[ \\begin{eqnarray*} \\displaystyle \\int^\\var{i1}_\\var{i0} \\simplify[std]{x*({b}x+{c})^{m}} dx &=& [uv]^\\var{i1}_\\var{i0} - \\int^\\var{i1}_\\var{i0} v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{[(x/{(m+1)*b})*({b}*x+{c})^{m+1}]}^\\var{i1}_\\var{i0} -\\simplify{ (1/{(m+1)*b})}*\\int^\\var{i1}_\\var{i0}(\\var{b}*x+\\var{c})^{\\var{m}+1} \\mathrm{d}x \\\\ &=& \\simplify[std]{[(x/{(m+1)*b})*({b}*x+{c})^{m+1}]}^\\var{i1}_\\var{i0} - \\simplify{(1/{(m+1)*(m+2)*b^2})*({b}*x+{c})^{m+2}}^\\var{i1}_\\var{i0} \\\\ &=&[\\simplify[std]{({b}*x+{c})^{m+1}/{(m+1)*(m+2)*b^2}*({b*(m+2)}x - ({b}x+{c}))}]^\\var{i1}_\\var{i0}\\\\ &=&[\\simplify[std]{({b}*x+{c})^{m+1}/{(m+1)*(m+2)*b^2}*({b*(m+1)}x - {c})}]^\\var{i1}_\\var{i0} \\end{eqnarray*}\\]
The formula for integrating by parts is
\n\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]
What is the most suitable choice for $u$ and $\\frac{dv}{dx}$?
\n$u=\\;$[[0]]
\n$\\frac{dv}{dx}=\\;$[[1]]$+C$
\n\n", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "x", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "({b}x+{c})^{m}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "Hence find $v =\\;$[[0]]
\nand $\\frac{du}{dx} =\\;$[[1]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "(({b}x+{c})^({m}+1))/(({m}+1)*{b})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "1", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "Hence $uv =\\;$[[0]]
\n$\\int v\\frac{du}{dx}\\mathrm{d}x =\\;$[[1]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "x*(({b}x+{c})^({m}+1))/(({m}+1)*{b})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "(({b}x+{c})^({m}+2))/(({m}+1)*({m}+2)*{b}^2)", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "Hence $I = [uv]_\\var{i0}^\\var{i1} - \\int^\\var{i1}_\\var{i0} v\\frac{du}{dx}\\mathrm{d}x =\\;$[[1]]
\n", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{b*(m+1)}*x-{c}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all,fractionnumbers", "scripts": {}, "answer": "({b}*{i1}+{c})^{m+1}/{(m+1)*(m+2)*b^2}*({b*(m+1)}*{i1} - {c})-({b}*{i0}+{c})^{m+1}/{(m+1)*(m+2)*b^2}*({b*(m+1)}*{i0} - {c})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Using integration by parts, find the following indefinite integral $I=\\displaystyle \\int^\\var{i1}_\\var{i0} \\simplify[std]{x*({b}x+{c})^{m}} dx $
\nYou need to know that for $n \\neq -1$:
\n\\[ \\int (ax+b)^n dx = \\frac{1}{a(n+1)}(ax+b)^{n+1}+C\\]
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"c": {"definition": "s3*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "s3": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s3", "description": ""}, "i0": {"definition": "floor(i1/2)", "templateType": "anything", "group": "Ungrouped variables", "name": "i0", "description": ""}, "m": {"definition": "random(2..6)", "templateType": "anything", "group": "Ungrouped variables", "name": "m", "description": ""}, "i1": {"definition": "random(1..3)", "templateType": "anything", "group": "Ungrouped variables", "name": "i1", "description": ""}}, "metadata": {"notes": "\n \t\t \t\t3/08/2012:
\n \t\t \t\tAdded tags.
\n \t\t \t\tAdded description.
\n \t\t \t\tChecked calculation. OK.
\n \t\t \t\tGot rid of redundant instructions about inputting constant of integration.
\n \t\t \t\tGot rid of instruction re not inputting decimals - no restriction needed, so no forbidden strings.
\n \t\t \t\tPenalised use of steps, 1 mark. Added message to that effect.
\n \t\t \t\tImproved Advice display.
\n \t\t \n \t\t", "description": "Given that $\\displaystyle \\int^i_j x({ax+b)^{m}} dx=\\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "joshua boddy", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/557/"}]}]}], "contributors": [{"name": "joshua boddy", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/557/"}]}