// Numbas version: finer_feedback_settings {"name": "Integration by parts 1 with limits", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["s3", "c", "b", "m", "i1", "i0"], "name": "Integration by parts 1 with limits", "tags": ["algebraic manipulation", "Calculus", "calculus", "indefinite integration", "integrals", "integration", "integration by parts", "steps", "Steps"], "advice": "

The formula for integrating by parts is

\n

\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]

\n

We choose $u = x$ and $\\displaystyle \\frac{dv}{dx} = \\simplify[std]{({b}*x+{c})^{m}}$.

\n

So $\\displaystyle \\frac{du}{dx}$ = $1$ and $\\displaystyle v = \\simplify[std]{(1/{(m+1)*b})*({b}*x+{c})^{m+1}}$.

\n

Hence,
\\[ \\begin{eqnarray*} \\displaystyle \\int^\\var{i1}_\\var{i0} \\simplify[std]{x*({b}x+{c})^{m}} dx &=& [uv]^\\var{i1}_\\var{i0} - \\int^\\var{i1}_\\var{i0} v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{[(x/{(m+1)*b})*({b}*x+{c})^{m+1}]}^\\var{i1}_\\var{i0} -\\simplify{ (1/{(m+1)*b})}*\\int^\\var{i1}_\\var{i0}(\\var{b}*x+\\var{c})^{\\var{m}+1} \\mathrm{d}x \\\\ &=& \\simplify[std]{[(x/{(m+1)*b})*({b}*x+{c})^{m+1}]}^\\var{i1}_\\var{i0} - \\simplify{(1/{(m+1)*(m+2)*b^2})*({b}*x+{c})^{m+2}}^\\var{i1}_\\var{i0} \\\\ &=&[\\simplify[std]{({b}*x+{c})^{m+1}/{(m+1)*(m+2)*b^2}*({b*(m+2)}x - ({b}x+{c}))}]^\\var{i1}_\\var{i0}\\\\ &=&[\\simplify[std]{({b}*x+{c})^{m+1}/{(m+1)*(m+2)*b^2}*({b*(m+1)}x - {c})}]^\\var{i1}_\\var{i0} \\end{eqnarray*}\\]

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "

The formula for integrating by parts is

\n

\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]

\n

What is the most suitable choice for $u$ and $\\frac{dv}{dx}$?

\n

$u=\\;$[[0]]

\n

$\\frac{dv}{dx}=\\;$[[1]]$+C$

\n

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "x", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "({b}x+{c})^{m}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Hence find $v =\\;$[[0]] 

\n

and $\\frac{du}{dx} =\\;$[[1]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "(({b}x+{c})^({m}+1))/(({m}+1)*{b})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "1", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Hence $uv =\\;$[[0]]

\n

$\\int v\\frac{du}{dx}\\mathrm{d}x =\\;$[[1]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "x*(({b}x+{c})^({m}+1))/(({m}+1)*{b})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "(({b}x+{c})^({m}+2))/(({m}+1)*({m}+2)*{b}^2)", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Hence $I = [uv]_\\var{i0}^\\var{i1} - \\int^\\var{i1}_\\var{i0} v\\frac{du}{dx}\\mathrm{d}x =\\;$[[1]]

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{b*(m+1)}*x-{c}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all,fractionnumbers", "scripts": {}, "answer": "({b}*{i1}+{c})^{m+1}/{(m+1)*(m+2)*b^2}*({b*(m+1)}*{i1} - {c})-({b}*{i0}+{c})^{m+1}/{(m+1)*(m+2)*b^2}*({b*(m+1)}*{i0} - {c})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "

Using integration by parts, find the following indefinite integral $I=\\displaystyle \\int^\\var{i1}_\\var{i0} \\simplify[std]{x*({b}x+{c})^{m}} dx $

\n

You need to know that for $n \\neq -1$:

\n

\\[ \\int (ax+b)^n dx = \\frac{1}{a(n+1)}(ax+b)^{n+1}+C\\]

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"c": {"definition": "s3*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "s3": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s3", "description": ""}, "i0": {"definition": "floor(i1/2)", "templateType": "anything", "group": "Ungrouped variables", "name": "i0", "description": ""}, "m": {"definition": "random(2..6)", "templateType": "anything", "group": "Ungrouped variables", "name": "m", "description": ""}, "i1": {"definition": "random(1..3)", "templateType": "anything", "group": "Ungrouped variables", "name": "i1", "description": ""}}, "metadata": {"notes": "\n \t\t \t\t

3/08/2012:

\n \t\t \t\t

Added tags.

\n \t\t \t\t

Added description.

\n \t\t \t\t

Checked calculation. OK.

\n \t\t \t\t

Got rid of redundant instructions about inputting constant of integration.

\n \t\t \t\t

Got rid of instruction re not inputting decimals - no restriction needed, so no forbidden strings.

\n \t\t \t\t

Penalised use of steps, 1 mark. Added message to that effect.

\n \t\t \t\t

Improved Advice display.

\n \t\t \n \t\t", "description": "

Given that $\\displaystyle \\int^i_j x({ax+b)^{m}} dx=\\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "joshua boddy", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/557/"}]}]}], "contributors": [{"name": "joshua boddy", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/557/"}]}