// Numbas version: finer_feedback_settings {"name": "Julie's copy of Input 5", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "c", "b", "d"], "name": "Julie's copy of Input 5", "tags": ["algebraic input", "brackets", "input", "introduction", "mathematical expressions", "numbas", "Numbas", "Ratios", "ratios"], "advice": "

\n

a)

\n

A correct input is ({b} + {a}y) / ({c} + {d}z). Also correct is ({a}y+{b}) / ({c} + {d}z) etc.

\n

b)

\n

A correct input is ({d}z + {b}) / ((x + {a})*(y + {c})).

\n

Note the denominator (the bottom of the ratio) has to have two brackets, i.e. ((x + {a})*(y + {c})) as otherwise the expression ({d}z + {b}) / (x + {a})*(y + {c}) is seen by the system as $\\displaystyle \\left(\\simplify[std]{({d} * z + {b}) / (x + {a})}\\right) (y + \\var{c})$

\n

", "rulesets": {"std": ["all", "!collectNumbers"]}, "parts": [{"prompt": "

Input the expression $\\displaystyle \\frac{\\var{b}+\\var{a}y}{\\var{d}+\\var{c}z}$. [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "({b}+{a}y)/({d}+{c}z)", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Input the expression $\\displaystyle \\frac {\\var{d} z + \\var{b}} {(x + \\var{a}) (y + \\var{c})}$. [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "({d} * z + {b}) / ((x + {a}) * (y + {c}))", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "

This question concerns ratios of algebraic expressions.

\n

By this we mean expressions of the form $\\displaystyle \\frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)$ are algebraic expressions.

\n

If you want to input such an expression into the system you HAVE TO BE CAREFUL AND USE BRACKETS or mistakes will occur.

\n

Once again, the box displaying your input in mathematical notation beside the input boxes in parts a and b is very useful as it shows what the system thinks you have entered.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a": {"definition": "random(2..16#2)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(3..15#2)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "random(2..9 except [round(b*c/a),c])", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}}, "metadata": {"notes": "", "description": "

Instructions on inputting ratios of algebraic expressions.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}]}