GET /api/questions/11722/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
    "url": "https://numbas.mathcentre.ac.uk/api/questions/11722/?format=api",
    "name": "Differentiate product of binomial, trig, and exponential",
    "published": true,
    "project": "https://numbas.mathcentre.ac.uk/api/projects/601/?format=api",
    "author": {
        "url": "https://numbas.mathcentre.ac.uk/api/users/697/?format=api",
        "profile": "https://numbas.mathcentre.ac.uk/accounts/profile/697/?format=api",
        "full_name": "Newcastle University Mathematics and Statistics",
        "pk": 697,
        "avatar": {
            "20x20": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.20x20.png",
            "40x40": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.40x40.png",
            "150x150": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.150x150.png"
        }
    },
    "edit": "https://numbas.mathcentre.ac.uk/question/11722/differentiate-product-of-binomial-trig-and-exponen/?format=api",
    "preview": "https://numbas.mathcentre.ac.uk/question/11722/differentiate-product-of-binomial-trig-and-exponen/preview/?format=api",
    "download": "https://numbas.mathcentre.ac.uk/question/11722/differentiate-product-of-binomial-trig-and-exponen.zip?format=api",
    "source": "https://numbas.mathcentre.ac.uk/question/11722/differentiate-product-of-binomial-trig-and-exponen.exam?format=api",
    "metadata": {
        "notes": "\n    \t\t<p><strong>31/07/2012:</strong></p>\n    \t\t<p>Checked calculation.</p>\n    \t\t<p>Added tags.</p>\n    \t\t<p>Allowed no penalty on looking at Show steps.</p>\n    \t\t<p>Corrected occurences of the form xsin and xcos to x*sin, x*cos.</p>\n    \t\t<p>Included message warning about the input of functions of the form xsin etc.</p>\n    \t\t<p>Show steps needs to be resolved. Now resolved.</p>\n    \t\t",
        "licence": "Creative Commons Attribution 4.0 International",
        "description": "<p>Differentiate $f(x)=x^{m}\\sin(ax+b) e^{nx}$.</p>\n<p>The answer is of the form:<br />$\\displaystyle \\frac{df}{dx}= x^{m-1}e^{nx}g(x)$ for a function $g(x)$.</p>\n<p>Find $g(x)$.</p>"
    },
    "status": null,
    "resources": []
}