GET /api/questions/11722/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
{
"url": "https://numbas.mathcentre.ac.uk/api/questions/11722/?format=api",
"name": "Differentiate product of binomial, trig, and exponential",
"published": true,
"project": "https://numbas.mathcentre.ac.uk/api/projects/601/?format=api",
"author": {
"url": "https://numbas.mathcentre.ac.uk/api/users/697/?format=api",
"profile": "https://numbas.mathcentre.ac.uk/accounts/profile/697/?format=api",
"full_name": "Newcastle University Mathematics and Statistics",
"pk": 697,
"avatar": {
"20x20": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.20x20.png",
"40x40": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.40x40.png",
"150x150": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.150x150.png"
}
},
"edit": "https://numbas.mathcentre.ac.uk/question/11722/differentiate-product-of-binomial-trig-and-exponen/?format=api",
"preview": "https://numbas.mathcentre.ac.uk/question/11722/differentiate-product-of-binomial-trig-and-exponen/preview/?format=api",
"download": "https://numbas.mathcentre.ac.uk/question/11722/differentiate-product-of-binomial-trig-and-exponen.zip?format=api",
"source": "https://numbas.mathcentre.ac.uk/question/11722/differentiate-product-of-binomial-trig-and-exponen.exam?format=api",
"metadata": {
"notes": "\n \t\t<p><strong>31/07/2012:</strong></p>\n \t\t<p>Checked calculation.</p>\n \t\t<p>Added tags.</p>\n \t\t<p>Allowed no penalty on looking at Show steps.</p>\n \t\t<p>Corrected occurences of the form xsin and xcos to x*sin, x*cos.</p>\n \t\t<p>Included message warning about the input of functions of the form xsin etc.</p>\n \t\t<p>Show steps needs to be resolved. Now resolved.</p>\n \t\t",
"licence": "Creative Commons Attribution 4.0 International",
"description": "<p>Differentiate $f(x)=x^{m}\\sin(ax+b) e^{nx}$.</p>\n<p>The answer is of the form:<br />$\\displaystyle \\frac{df}{dx}= x^{m-1}e^{nx}g(x)$ for a function $g(x)$.</p>\n<p>Find $g(x)$.</p>"
},
"status": null,
"resources": []
}