GET /api/questions/11735/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
{
"url": "https://numbas.mathcentre.ac.uk/api/questions/11735/?format=api",
"name": "Quotient rule - differentiate linear over square root",
"published": true,
"project": "https://numbas.mathcentre.ac.uk/api/projects/601/?format=api",
"author": {
"url": "https://numbas.mathcentre.ac.uk/api/users/697/?format=api",
"profile": "https://numbas.mathcentre.ac.uk/accounts/profile/697/?format=api",
"full_name": "Newcastle University Mathematics and Statistics",
"pk": 697,
"avatar": {
"20x20": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.20x20.png",
"40x40": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.40x40.png",
"150x150": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.150x150.png"
}
},
"edit": "https://numbas.mathcentre.ac.uk/question/11735/quotient-rule-differentiate-linear-over-square-roo/?format=api",
"preview": "https://numbas.mathcentre.ac.uk/question/11735/quotient-rule-differentiate-linear-over-square-roo/preview/?format=api",
"download": "https://numbas.mathcentre.ac.uk/question/11735/quotient-rule-differentiate-linear-over-square-roo.zip?format=api",
"source": "https://numbas.mathcentre.ac.uk/question/11735/quotient-rule-differentiate-linear-over-square-roo.exam?format=api",
"metadata": {
"notes": "\n\t\t<p><strong>1/08/2012:</strong></p>\n\t\t<p>Added tags.</p>\n\t\t<p>Added description.</p>\n\t\t<p>Checked calculation. OK.</p>\n\t\t<p>Added information about Show steps. Altered to 0 marks lost rather than 1.</p>\n\t\t<p>Changed std rule set to include !noLeadingMinus, so polynomials don't change order. Got rid of a redundant ruleset.</p>\n\t\t<p>Improved display in various places.</p>\n\t\t<p>Added condition that numbers have to be input as fractions or integers - added decimal point to forbidden strings.</p>\n\t\t",
"licence": "Creative Commons Attribution 4.0 International",
"description": "<p>The derivative of $\\displaystyle \\frac{ax+b}{\\sqrt{cx+d}}$ is $\\displaystyle \\frac{g(x)}{2(cx+d)^{3/2}}$. Find $g(x)$.</p>"
},
"status": "ok",
"resources": []
}