GET /api/questions/11739/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
    "url": "https://numbas.mathcentre.ac.uk/api/questions/11739/?format=api",
    "name": "Implicit differentiation",
    "published": true,
    "project": "https://numbas.mathcentre.ac.uk/api/projects/601/?format=api",
    "author": {
        "url": "https://numbas.mathcentre.ac.uk/api/users/697/?format=api",
        "profile": "https://numbas.mathcentre.ac.uk/accounts/profile/697/?format=api",
        "full_name": "Newcastle University Mathematics and Statistics",
        "pk": 697,
        "avatar": {
            "20x20": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.20x20.png",
            "40x40": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.40x40.png",
            "150x150": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.150x150.png"
        }
    },
    "edit": "https://numbas.mathcentre.ac.uk/question/11739/implicit-differentiation/?format=api",
    "preview": "https://numbas.mathcentre.ac.uk/question/11739/implicit-differentiation/preview/?format=api",
    "download": "https://numbas.mathcentre.ac.uk/question/11739/implicit-differentiation.zip?format=api",
    "source": "https://numbas.mathcentre.ac.uk/question/11739/implicit-differentiation.exam?format=api",
    "metadata": {
        "notes": "\n                            \t\t<p><strong>20/06/2012:</strong></p>\n                            \t\t<p>Added tags.</p>\n                            \t\t<p>Improved display using \\displaystyle where appropriate.</p>\n                            \t\t<p>Changed marks to 2.</p>\n                            \t\t<p>&nbsp;</p>\n                            \t\t<p><strong>3/07/2012:<br /></strong></p>\n                            \t\t<p>Added tags.</p>\n                            \t\t",
        "licence": "Creative Commons Attribution 4.0 International",
        "description": "\n                            \t\t<p>Implicit differentiation.</p>\n                            \t\t<p>Given $x^2+y^2+ax+by=c$ find $\\displaystyle \\frac{dy}{dx}$ in terms of $x$ and $y$.</p>\n                            \t\t<p>&nbsp;</p>\n                            \t\t"
    },
    "status": null,
    "resources": []
}