GET /api/questions/11749/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
{
"url": "https://numbas.mathcentre.ac.uk/api/questions/11749/?format=api",
"name": "Calculate definite integral with a hyperbolic substitution",
"published": true,
"project": "https://numbas.mathcentre.ac.uk/api/projects/601/?format=api",
"author": {
"url": "https://numbas.mathcentre.ac.uk/api/users/697/?format=api",
"profile": "https://numbas.mathcentre.ac.uk/accounts/profile/697/?format=api",
"full_name": "Newcastle University Mathematics and Statistics",
"pk": 697,
"avatar": {
"20x20": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.20x20.png",
"40x40": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.40x40.png",
"150x150": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.150x150.png"
}
},
"edit": "https://numbas.mathcentre.ac.uk/question/11749/calculate-definite-integral-with-a-hyperbolic-subs/?format=api",
"preview": "https://numbas.mathcentre.ac.uk/question/11749/calculate-definite-integral-with-a-hyperbolic-subs/preview/?format=api",
"download": "https://numbas.mathcentre.ac.uk/question/11749/calculate-definite-integral-with-a-hyperbolic-subs.zip?format=api",
"source": "https://numbas.mathcentre.ac.uk/question/11749/calculate-definite-integral-with-a-hyperbolic-subs.exam?format=api",
"metadata": {
"notes": "<p><strong>30/06/2012:</strong></p>\n <p>Added, edited tags</p>\n <p>Slight change to prompt.</p>\n <p>Could include standard integral in Show steps (once Show steps is available)</p>\n <p><strong>19/07/2012:</strong></p>\n <p>Added description.</p>\n <p>Changed Advice on the standard integral - so that it makes sense!</p>\n <p>Added Show steps information on the standard integral.</p>\n <p>Checked calculation.</p>\n <p>Set new tolerance variable tol=0 for the numeric input.</p>\n <p><strong>23/07/2012:</strong></p>\n <p>Added tags.</p>\n <p>Solution always requires arccosh(x) and not arcsinh(x) or arctanh(x). Is this on purpose?</p>\n <p> Question appears to be working correctly.</p>\n <p><strong>22/12/2012:(WHF)</strong></p>\n <p>Checked calculation, OK. Added tested1 tag.</p>\n <p>Checked rounding, OK. Added cr1 tag.</p>\n <p> </p>\n <p><br /><br /></p>\n <p> </p>",
"licence": "Creative Commons Attribution 4.0 International",
"description": "<p>Find (hyperbolic substitution):<br />$\\displaystyle \\int_{b}^{2b} \\left(\\frac{1}{\\sqrt{a^2x^2-b^2}}\\right)\\;dx$</p>"
},
"status": null,
"resources": []
}