GET /api/questions/11761/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
{
"url": "https://numbas.mathcentre.ac.uk/api/questions/11761/?format=api",
"name": "Definite integration using standard integrals",
"published": true,
"project": "https://numbas.mathcentre.ac.uk/api/projects/601/?format=api",
"author": {
"url": "https://numbas.mathcentre.ac.uk/api/users/697/?format=api",
"profile": "https://numbas.mathcentre.ac.uk/accounts/profile/697/?format=api",
"full_name": "Newcastle University Mathematics and Statistics",
"pk": 697,
"avatar": {
"20x20": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.20x20.png",
"40x40": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.40x40.png",
"150x150": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.150x150.png"
}
},
"edit": "https://numbas.mathcentre.ac.uk/question/11761/definite-integration-using-standard-integrals/?format=api",
"preview": "https://numbas.mathcentre.ac.uk/question/11761/definite-integration-using-standard-integrals/preview/?format=api",
"download": "https://numbas.mathcentre.ac.uk/question/11761/definite-integration-using-standard-integrals.zip?format=api",
"source": "https://numbas.mathcentre.ac.uk/question/11761/definite-integration-using-standard-integrals.exam?format=api",
"metadata": {
"notes": "\n \t\t<p><strong>20/06/2012:</strong></p>\n \t\t<p>Added tags.</p>\n \t\t<p>Improved display of prompts.</p>\n \t\t<p>Incomplete loading of question into editor noted. OK if refreshed.</p>\n \t\t<p>Changed accuracy for second question to relative difference of 0.0001 to ensure it marked correctly for extreme values.</p>\n \t\t",
"licence": "Creative Commons Attribution 4.0 International",
"description": "<p>Calculate definite integrals: $\\int_0^\\infty\\;e^{-ax}\\,dx$, $\\int_1^2\\;\\frac{1}{x^{b}}\\,dx$, $\\; \\int_0^{\\pi}\\;\\cos\\left(\\frac{x}{2n}\\right)\\,dx$</p>"
},
"status": null,
"resources": []
}