GET /api/questions/11794/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
    "url": "https://numbas.mathcentre.ac.uk/api/questions/11794/?format=api",
    "name": "Roots of a quartic real polynomial",
    "published": true,
    "project": "https://numbas.mathcentre.ac.uk/api/projects/601/?format=api",
    "author": {
        "url": "https://numbas.mathcentre.ac.uk/api/users/697/?format=api",
        "profile": "https://numbas.mathcentre.ac.uk/accounts/profile/697/?format=api",
        "full_name": "Newcastle University Mathematics and Statistics",
        "pk": 697,
        "avatar": {
            "20x20": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.20x20.png",
            "40x40": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.40x40.png",
            "150x150": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.150x150.png"
        }
    },
    "edit": "https://numbas.mathcentre.ac.uk/question/11794/roots-of-a-quartic-real-polynomial/?format=api",
    "preview": "https://numbas.mathcentre.ac.uk/question/11794/roots-of-a-quartic-real-polynomial/preview/?format=api",
    "download": "https://numbas.mathcentre.ac.uk/question/11794/roots-of-a-quartic-real-polynomial.zip?format=api",
    "source": "https://numbas.mathcentre.ac.uk/question/11794/roots-of-a-quartic-real-polynomial.exam?format=api",
    "metadata": {
        "notes": "<p><strong>15/07/2015:</strong></p>\n<p>Added tags.</p>\n<p><strong>25/08/2012:</strong></p>\n<p>Copied question finding roots of a cubic in order to create new question finding roots of a quartic with 4 complex roots.</p>\n<p>Function ch finds the imaginary part of the complex number $z_3$ and ensures that $z_3$ is not a solution by insisting that $|z_3|^2$ does not divide the constant term of the polynomial. This is a simple way for the students to test to see which one of $z_1$ and $z_2$ is a solution.</p>\n<p>Added tags.</p>\n<p>Added description.</p>\n<p>Checked calculation.OK.</p>",
        "licence": "Creative Commons Attribution 4.0 International",
        "description": "<p>Given two complex numbers, find by inspection the one that is a root of a given quartic real polynomial and hence find the other roots.&nbsp;</p>"
    },
    "status": "ok",
    "resources": []
}