GET /api/questions/12052/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
{
"url": "https://numbas.mathcentre.ac.uk/api/questions/12052/?format=api",
"name": "Construct a probability distribution function, then find CDF and expectation",
"published": true,
"project": "https://numbas.mathcentre.ac.uk/api/projects/601/?format=api",
"author": {
"url": "https://numbas.mathcentre.ac.uk/api/users/697/?format=api",
"profile": "https://numbas.mathcentre.ac.uk/accounts/profile/697/?format=api",
"full_name": "Newcastle University Mathematics and Statistics",
"pk": 697,
"avatar": {
"20x20": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.20x20.png",
"40x40": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.40x40.png",
"150x150": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.150x150.png"
}
},
"edit": "https://numbas.mathcentre.ac.uk/question/12052/construct-a-probability-distribution-function-then/?format=api",
"preview": "https://numbas.mathcentre.ac.uk/question/12052/construct-a-probability-distribution-function-then/preview/?format=api",
"download": "https://numbas.mathcentre.ac.uk/question/12052/construct-a-probability-distribution-function-then.zip?format=api",
"source": "https://numbas.mathcentre.ac.uk/question/12052/construct-a-probability-distribution-function-then.exam?format=api",
"metadata": {
"notes": "<p><strong>8/07/2012:</strong></p>\n <p>Added tags.</p>\n <p>Checked calculations, OK.</p>\n <p>Set tolerance via new variable tol=0.01 for last question.</p>\n <p><strong>23/07/2012:</strong></p>\n <p>Added description.</p>\n <p><strong>1/08/2012:</strong></p>\n <p>Added tags.</p>\n <p>In the Advice section, moved \\Rightarrow to the beginning of the line instead of the end of the previous line.</p>\n <p>Question appears to be working correctly.</p>\n <p><strong>21/12/2012:</strong></p>\n <p>Checked calculations, OK. Added tag tested1.</p>\n <p>Checked rounding, OK. Added tag cr1.</p>",
"licence": "Creative Commons Attribution 4.0 International",
"description": "<p>The random variable $X$ has a PDF which involves a parameter $c$. Find the value of $c$. Find the distribution function $F_X(x)$ and $P(a \\lt X \\lt b)$.</p>\n<p>Also find the expectation $\\displaystyle \\operatorname{E}[X]=\\int_{-\\infty}^{\\infty}xf_X(x)\\;dx$.</p>"
},
"status": null,
"resources": []
}