GET /api/questions/12093/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
    "url": "https://numbas.mathcentre.ac.uk/api/questions/12093/?format=api",
    "name": "Second order ODE with constant coefficients and boundary conditions",
    "published": true,
    "project": "https://numbas.mathcentre.ac.uk/api/projects/601/?format=api",
    "author": {
        "url": "https://numbas.mathcentre.ac.uk/api/users/697/?format=api",
        "profile": "https://numbas.mathcentre.ac.uk/accounts/profile/697/?format=api",
        "full_name": "Newcastle University Mathematics and Statistics",
        "pk": 697,
        "avatar": {
            "20x20": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.20x20.png",
            "40x40": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.40x40.png",
            "150x150": "https://numbas.mathcentre.ac.uk/media/avatars/UnivNcle-shield_mKn5GZP.150x150.png"
        }
    },
    "edit": "https://numbas.mathcentre.ac.uk/question/12093/second-order-ode-with-constant-coefficients-and-bo/?format=api",
    "preview": "https://numbas.mathcentre.ac.uk/question/12093/second-order-ode-with-constant-coefficients-and-bo/preview/?format=api",
    "download": "https://numbas.mathcentre.ac.uk/question/12093/second-order-ode-with-constant-coefficients-and-bo.zip?format=api",
    "source": "https://numbas.mathcentre.ac.uk/question/12093/second-order-ode-with-constant-coefficients-and-bo.exam?format=api",
    "metadata": {
        "notes": "<p><strong>29/06/2012:</strong></p>\n    <p><strong><br /></strong>Added tags. Edited tags.</p>\n    <p>Improved display.</p>\n    <p>Checked answer.</p>\n    <p><strong>23/07/2012:</strong></p>\n    <p>Added tags.</p>\n    <p>Question appears to be working correctly.</p>\n    <p><strong>04/11/2012:</strong></p>\n    <p><strong><br /></strong>Corrected mistake in solution.</p>",
        "licence": "Creative Commons Attribution 4.0 International",
        "description": "<p>Solve:&nbsp;$\\displaystyle \\frac{d^2y}{dx^2}+2a\\frac{dy}{dx}+(a^2+b^2)y=0,\\;y(0)=1$ and $y'(0)=c$.&nbsp;</p>"
    },
    "status": "ok",
    "resources": []
}