GET /api/questions/152973/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
    "url": "https://numbas.mathcentre.ac.uk/api/questions/152973/?format=api",
    "name": "AS04 Simultaneous Equations (one non-linear)",
    "published": true,
    "project": "https://numbas.mathcentre.ac.uk/api/projects/25382/?format=api",
    "author": {
        "url": "https://numbas.mathcentre.ac.uk/api/users/21832/?format=api",
        "profile": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/?format=api",
        "full_name": "Andrew Neate",
        "pk": 21832,
        "avatar": null
    },
    "edit": "https://numbas.mathcentre.ac.uk/question/152973/as04-simultaneous-equations-one-non-linear/?format=api",
    "preview": "https://numbas.mathcentre.ac.uk/question/152973/as04-simultaneous-equations-one-non-linear/preview/?format=api",
    "download": "https://numbas.mathcentre.ac.uk/question/152973/as04-simultaneous-equations-one-non-linear.zip?format=api",
    "source": "https://numbas.mathcentre.ac.uk/question/152973/as04-simultaneous-equations-one-non-linear.exam?format=api",
    "metadata": {
        "description": "<p>Solving a pair of simultaneous equations of the form $a_1x+y=c_1$ and $a_2x^2+b_2xy=c_2$ by forming a quadratic equation.</p>",
        "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"
    },
    "status": "ok",
    "resources": []
}