GET /api/questions/152973/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
{
"url": "https://numbas.mathcentre.ac.uk/api/questions/152973/?format=api",
"name": "AS04 Simultaneous Equations (one non-linear)",
"published": true,
"project": "https://numbas.mathcentre.ac.uk/api/projects/25382/?format=api",
"author": {
"url": "https://numbas.mathcentre.ac.uk/api/users/21832/?format=api",
"profile": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/?format=api",
"full_name": "Andrew Neate",
"pk": 21832,
"avatar": null
},
"edit": "https://numbas.mathcentre.ac.uk/question/152973/as04-simultaneous-equations-one-non-linear/?format=api",
"preview": "https://numbas.mathcentre.ac.uk/question/152973/as04-simultaneous-equations-one-non-linear/preview/?format=api",
"download": "https://numbas.mathcentre.ac.uk/question/152973/as04-simultaneous-equations-one-non-linear.zip?format=api",
"source": "https://numbas.mathcentre.ac.uk/question/152973/as04-simultaneous-equations-one-non-linear.exam?format=api",
"metadata": {
"description": "<p>Solving a pair of simultaneous equations of the form $a_1x+y=c_1$ and $a_2x^2+b_2xy=c_2$ by forming a quadratic equation.</p>",
"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"
},
"status": "ok",
"resources": []
}