GET /api/questions/16/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
{
"url": "https://numbas.mathcentre.ac.uk/api/questions/16/?format=api",
"name": "Combining algebraic fractions 5.2",
"published": true,
"project": "https://numbas.mathcentre.ac.uk/api/projects/3/?format=api",
"author": {
"url": "https://numbas.mathcentre.ac.uk/api/users/6/?format=api",
"profile": "https://numbas.mathcentre.ac.uk/accounts/profile/6/?format=api",
"full_name": "Bill Foster",
"pk": 6,
"avatar": null
},
"edit": "https://numbas.mathcentre.ac.uk/question/16/combining-algebraic-fractions-5-2/?format=api",
"preview": "https://numbas.mathcentre.ac.uk/question/16/combining-algebraic-fractions-5-2/preview/?format=api",
"download": "https://numbas.mathcentre.ac.uk/question/16/combining-algebraic-fractions-5-2.zip?format=api",
"source": "https://numbas.mathcentre.ac.uk/question/16/combining-algebraic-fractions-5-2.exam?format=api",
"metadata": {
"notes": "<p><strong>19/08/2012:</strong></p>\n <p>Added tags.</p>\n <p>Added description.</p>\n <p>Coefficients of $x$ in all three denominators is $1$.</p>\n <p>Made sure that the numerator in the first part addition has an $x$ term by insisting that $a \\neq -c$.</p>\n <p>Checked calculations.OK.</p>\n <p><strong>02/02/2103:</strong></p>\n <p>Numerator in second part is now non-zero by changing variable c1. Also added comment that the numerator has to be simplified.</p>",
"description": "\n \t\t<p>First part: express as a single fraction: $\\displaystyle \\frac{a}{x + b} + \\frac{c}{x + d},\\; a \\neq -c$.</p>\n \t\t <p>Second part: Find $\\displaystyle \\frac{a}{x + b} + \\frac{c}{x + d}+\\frac{r}{x+t}$ as a single fraction.</p>\n \t\t",
"licence": "Creative Commons Attribution 4.0 International"
},
"status": null,
"resources": []
}