GET /api/questions/22583/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
{
"url": "https://numbas.mathcentre.ac.uk/api/questions/22583/?format=api",
"name": "Using the Logarithm Equivalence $\\log_ba=c \\Longleftrightarrow a=b^c$",
"published": true,
"project": "https://numbas.mathcentre.ac.uk/api/projects/1917/?format=api",
"author": {
"url": "https://numbas.mathcentre.ac.uk/api/users/1594/?format=api",
"profile": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/?format=api",
"full_name": "Hannah Aldous",
"pk": 1594,
"avatar": null
},
"edit": "https://numbas.mathcentre.ac.uk/question/22583/using-the-logarithm-equivalence-log-ba-c-longleftr/?format=api",
"preview": "https://numbas.mathcentre.ac.uk/question/22583/using-the-logarithm-equivalence-log-ba-c-longleftr/preview/?format=api",
"download": "https://numbas.mathcentre.ac.uk/question/22583/using-the-logarithm-equivalence-log-ba-c-longleftr.zip?format=api",
"source": "https://numbas.mathcentre.ac.uk/question/22583/using-the-logarithm-equivalence-log-ba-c-longleftr.exam?format=api",
"metadata": {
"licence": "Creative Commons Attribution 4.0 International",
"description": "<p>Rearrange some expressions involving logarithms by applying the relation $\\log_b(a) = c \\iff a = b^c$.</p>"
},
"status": "ok",
"resources": []
}