GET /api/questions/229/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
    "url": "https://numbas.mathcentre.ac.uk/api/questions/229/?format=api",
    "name": "Solve a pair of linear equations using a matrix",
    "published": true,
    "project": "https://numbas.mathcentre.ac.uk/api/projects/3/?format=api",
    "author": {
        "url": "https://numbas.mathcentre.ac.uk/api/users/6/?format=api",
        "profile": "https://numbas.mathcentre.ac.uk/accounts/profile/6/?format=api",
        "full_name": "Bill Foster",
        "pk": 6,
        "avatar": null
    },
    "edit": "https://numbas.mathcentre.ac.uk/question/229/solve-a-pair-of-linear-equations-using-a-matrix/?format=api",
    "preview": "https://numbas.mathcentre.ac.uk/question/229/solve-a-pair-of-linear-equations-using-a-matrix/preview/?format=api",
    "download": "https://numbas.mathcentre.ac.uk/question/229/solve-a-pair-of-linear-equations-using-a-matrix.zip?format=api",
    "source": "https://numbas.mathcentre.ac.uk/question/229/solve-a-pair-of-linear-equations-using-a-matrix.exam?format=api",
    "metadata": {
        "notes": "\n        \t\t        \t\t<p><strong>20/06/2012:</strong></p>\n        \t\t        \t\t<p>Added, edited tags.</p>\n        \t\t        \t\t<p>Edited advice so that it gave the correct solution for $y$ (as in the answer).</p>\n        \t\t        \t\t<p>&nbsp;</p>\n        \t\t        \t\t<p>&nbsp;</p>\n        \t\t        \t\t<p><strong>4/07/2012:<br /></strong></p>\n        \t\t        \t\t<p>Column vectors v and b have the bracket in the incorrect place.</p>\n        \t\t        \t\t<p>&nbsp;</p>\n        \t\t        \t\t<p><strong>10/07/2012:<br /></strong></p>\n        \t\t        \t\t<p>Added tags.<strong><br /></strong></p>\n        \t\t        \t\t<p>Question appears to be working correctly.</p>\n        \t\t        \t\t<p>Column vectors v and b still have brackets in incorrect places.</p>\n        \t\t        \n        \t\t",
        "description": "<p>Putting a pair of linear equations into matrix notation and then solving by finding the inverse of the coefficient matrix.&nbsp;</p>",
        "licence": "Creative Commons Attribution 4.0 International"
    },
    "status": "ok",
    "resources": []
}