GET /api/questions/22997/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
    "url": "https://numbas.mathcentre.ac.uk/api/questions/22997/?format=api",
    "name": "Resolve a double integral",
    "published": true,
    "project": "https://numbas.mathcentre.ac.uk/api/projects/601/?format=api",
    "author": {
        "url": "https://numbas.mathcentre.ac.uk/api/users/7/?format=api",
        "profile": "https://numbas.mathcentre.ac.uk/accounts/profile/7/?format=api",
        "full_name": "Christian Lawson-Perfect",
        "pk": 7,
        "avatar": {
            "20x20": "https://numbas.mathcentre.ac.uk/media/avatars/clp-2023_OVPD4En.20x20.jpg",
            "40x40": "https://numbas.mathcentre.ac.uk/media/avatars/clp-2023_OVPD4En.40x40.jpg",
            "150x150": "https://numbas.mathcentre.ac.uk/media/avatars/clp-2023_OVPD4En.150x150.jpg"
        }
    },
    "edit": "https://numbas.mathcentre.ac.uk/question/22997/resolve-a-double-integral/?format=api",
    "preview": "https://numbas.mathcentre.ac.uk/question/22997/resolve-a-double-integral/preview/?format=api",
    "download": "https://numbas.mathcentre.ac.uk/question/22997/resolve-a-double-integral.zip?format=api",
    "source": "https://numbas.mathcentre.ac.uk/question/22997/resolve-a-double-integral.exam?format=api",
    "metadata": {
        "licence": "Creative Commons Attribution 4.0 International",
        "description": "<p>Calculate a repeated integral of the form $\\displaystyle I=\\int_0^1\\;dx\\;\\int_0^{x^{m-1}}mf(x^m+a)dy$</p>\n<p>The $y$ integral is trivial, and the $x$ integral is of the form $g'(x)f'(g(x))$, so it straightforwardly integrates to $f(g(x))$.</p>"
    },
    "status": "ok",
    "resources": []
}