GET /api/questions/22997/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
{
"url": "https://numbas.mathcentre.ac.uk/api/questions/22997/?format=api",
"name": "Resolve a double integral",
"published": true,
"project": "https://numbas.mathcentre.ac.uk/api/projects/601/?format=api",
"author": {
"url": "https://numbas.mathcentre.ac.uk/api/users/7/?format=api",
"profile": "https://numbas.mathcentre.ac.uk/accounts/profile/7/?format=api",
"full_name": "Christian Lawson-Perfect",
"pk": 7,
"avatar": {
"20x20": "https://numbas.mathcentre.ac.uk/media/avatars/clp-2023_OVPD4En.20x20.jpg",
"40x40": "https://numbas.mathcentre.ac.uk/media/avatars/clp-2023_OVPD4En.40x40.jpg",
"150x150": "https://numbas.mathcentre.ac.uk/media/avatars/clp-2023_OVPD4En.150x150.jpg"
}
},
"edit": "https://numbas.mathcentre.ac.uk/question/22997/resolve-a-double-integral/?format=api",
"preview": "https://numbas.mathcentre.ac.uk/question/22997/resolve-a-double-integral/preview/?format=api",
"download": "https://numbas.mathcentre.ac.uk/question/22997/resolve-a-double-integral.zip?format=api",
"source": "https://numbas.mathcentre.ac.uk/question/22997/resolve-a-double-integral.exam?format=api",
"metadata": {
"licence": "Creative Commons Attribution 4.0 International",
"description": "<p>Calculate a repeated integral of the form $\\displaystyle I=\\int_0^1\\;dx\\;\\int_0^{x^{m-1}}mf(x^m+a)dy$</p>\n<p>The $y$ integral is trivial, and the $x$ integral is of the form $g'(x)f'(g(x))$, so it straightforwardly integrates to $f(g(x))$.</p>"
},
"status": "ok",
"resources": []
}