GET /api/questions/235/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
    "url": "https://numbas.mathcentre.ac.uk/api/questions/235/?format=api",
    "name": "Max and Min 1 and 2",
    "published": true,
    "project": "https://numbas.mathcentre.ac.uk/api/projects/3/?format=api",
    "author": {
        "url": "https://numbas.mathcentre.ac.uk/api/users/6/?format=api",
        "profile": "https://numbas.mathcentre.ac.uk/accounts/profile/6/?format=api",
        "full_name": "Bill Foster",
        "pk": 6,
        "avatar": null
    },
    "edit": "https://numbas.mathcentre.ac.uk/question/235/max-and-min-1-and-2/?format=api",
    "preview": "https://numbas.mathcentre.ac.uk/question/235/max-and-min-1-and-2/preview/?format=api",
    "download": "https://numbas.mathcentre.ac.uk/question/235/max-and-min-1-and-2.zip?format=api",
    "source": "https://numbas.mathcentre.ac.uk/question/235/max-and-min-1-and-2.exam?format=api",
    "metadata": {
        "notes": "\n    \t\t<p><strong>9/07/2102:</strong></p>\n    \t\t<p>Added tags.</p>\n    \t\t<p>Question appears to be working correctly.</p>\n    \t\t<p>Changed grammar in the Advice section.</p>\n    \t\t",
        "description": "<p>$I$ compact interval, $g:I\\rightarrow I,\\;g(x)=ax^3+bx^2+cx+d$. Find stationary points, local and global maxima and minima of $g$ on $I$</p>",
        "licence": "Creative Commons Attribution 4.0 International"
    },
    "status": "ok",
    "resources": []
}