GET /api/questions/278/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
    "url": "https://numbas.mathcentre.ac.uk/api/questions/278/?format=api",
    "name": "Functions of two variables: Stationary points 1",
    "published": true,
    "project": "https://numbas.mathcentre.ac.uk/api/projects/3/?format=api",
    "author": {
        "url": "https://numbas.mathcentre.ac.uk/api/users/6/?format=api",
        "profile": "https://numbas.mathcentre.ac.uk/accounts/profile/6/?format=api",
        "full_name": "Bill Foster",
        "pk": 6,
        "avatar": null
    },
    "edit": "https://numbas.mathcentre.ac.uk/question/278/functions-of-two-variables-stationary-points-1/?format=api",
    "preview": "https://numbas.mathcentre.ac.uk/question/278/functions-of-two-variables-stationary-points-1/preview/?format=api",
    "download": "https://numbas.mathcentre.ac.uk/question/278/functions-of-two-variables-stationary-points-1.zip?format=api",
    "source": "https://numbas.mathcentre.ac.uk/question/278/functions-of-two-variables-stationary-points-1.exam?format=api",
    "metadata": {
        "notes": "\n        \t\t<p><strong>10/07/2012:</strong></p>\n        \t\t<p>Added tags.</p>\n        \t\t<p>Question appears to be working correctly.</p>\n        \t\t",
        "description": "<p>Find the stationary point $(p,q)$ of the function:&nbsp;$f(x,y)=ax^2+bxy+cy^2+dx+gy$. Calculate $f(p,q)$.</p>",
        "licence": "Creative Commons Attribution 4.0 International"
    },
    "status": "ok",
    "resources": []
}