GET /api/questions/278/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
{
"url": "https://numbas.mathcentre.ac.uk/api/questions/278/?format=api",
"name": "Functions of two variables: Stationary points 1",
"published": true,
"project": "https://numbas.mathcentre.ac.uk/api/projects/3/?format=api",
"author": {
"url": "https://numbas.mathcentre.ac.uk/api/users/6/?format=api",
"profile": "https://numbas.mathcentre.ac.uk/accounts/profile/6/?format=api",
"full_name": "Bill Foster",
"pk": 6,
"avatar": null
},
"edit": "https://numbas.mathcentre.ac.uk/question/278/functions-of-two-variables-stationary-points-1/?format=api",
"preview": "https://numbas.mathcentre.ac.uk/question/278/functions-of-two-variables-stationary-points-1/preview/?format=api",
"download": "https://numbas.mathcentre.ac.uk/question/278/functions-of-two-variables-stationary-points-1.zip?format=api",
"source": "https://numbas.mathcentre.ac.uk/question/278/functions-of-two-variables-stationary-points-1.exam?format=api",
"metadata": {
"notes": "\n \t\t<p><strong>10/07/2012:</strong></p>\n \t\t<p>Added tags.</p>\n \t\t<p>Question appears to be working correctly.</p>\n \t\t",
"description": "<p>Find the stationary point $(p,q)$ of the function: $f(x,y)=ax^2+bxy+cy^2+dx+gy$. Calculate $f(p,q)$.</p>",
"licence": "Creative Commons Attribution 4.0 International"
},
"status": "ok",
"resources": []
}