GET /api/questions/294/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
    "url": "https://numbas.mathcentre.ac.uk/api/questions/294/?format=api",
    "name": "Volume of revolution 1",
    "published": true,
    "project": "https://numbas.mathcentre.ac.uk/api/projects/3/?format=api",
    "author": {
        "url": "https://numbas.mathcentre.ac.uk/api/users/6/?format=api",
        "profile": "https://numbas.mathcentre.ac.uk/accounts/profile/6/?format=api",
        "full_name": "Bill Foster",
        "pk": 6,
        "avatar": null
    },
    "edit": "https://numbas.mathcentre.ac.uk/question/294/volume-of-revolution-1/?format=api",
    "preview": "https://numbas.mathcentre.ac.uk/question/294/volume-of-revolution-1/preview/?format=api",
    "download": "https://numbas.mathcentre.ac.uk/question/294/volume-of-revolution-1.zip?format=api",
    "source": "https://numbas.mathcentre.ac.uk/question/294/volume-of-revolution-1.exam?format=api",
    "metadata": {
        "notes": "\n    \t\t<p><strong>3/07/2012:</strong></p>\n    \t\t    <p>Added tags.</p>\n    \t\t    <p>Checked calculations.</p>\n    \t\t    <p>Improved display of statement, prompt and Advice.&nbsp;</p>\n    \t\t    <p>Wanted to put the Hint into Show steps - but cannot create Steps at present.</p>\n    \t\t    <p>No tolerance allowed. Must be exact to three decimal places.</p>\n    \t\t    <p>Note the use of $\\cos(x)^2$ instead of the standard $\\cos^2(x)$ as best to be consistent as we cannot use $\\cos^2(x)$ if any jme calculation is involved.</p>\n    \t\t    <p><strong>20/07/2012:</strong></p>\n    \t\t    <p>Added description.</p>\n    \t\t    <p>Added Show steps hint.</p>\n    \t\t    <p>Checked description.</p>\n    \t\t    <p>Perhaps the tolerance should be 1, not 0.001 given the magnitude of the answer.</p>\n    \t\t    <p></p>\n    \t\t    <p><strong>25/07/2012:</strong></p>\n    \t\t    <p>&nbsp;</p>\n    \t\t    <p>Added tags.</p>\n    \t\t    <p>&nbsp;</p>\n    \t\t    <p>Question appears to be working correctly.</p>\n    \t\t    <p>&nbsp;</p>\n    \t\t",
        "description": "<p>Rotate $y=a(\\cos(x)+b)$ by $2\\pi$ radians about the $x$-axis between $x=c\\pi$ and $x=(c+2)\\pi$. Find the volume of revolution.</p>",
        "licence": "Creative Commons Attribution 4.0 International"
    },
    "status": null,
    "resources": []
}