GET /api/questions/45373/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
{
"url": "https://numbas.mathcentre.ac.uk/api/questions/45373/?format=api",
"name": "Simon's copy of Represent a linear map as a matrix given a basis",
"published": true,
"project": "https://numbas.mathcentre.ac.uk/api/projects/4227/?format=api",
"author": {
"url": "https://numbas.mathcentre.ac.uk/api/users/3148/?format=api",
"profile": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/?format=api",
"full_name": "Simon Thomas",
"pk": 3148,
"avatar": null
},
"edit": "https://numbas.mathcentre.ac.uk/question/45373/simon-s-copy-of-represent-a-linear-map-as-a-matrix/?format=api",
"preview": "https://numbas.mathcentre.ac.uk/question/45373/simon-s-copy-of-represent-a-linear-map-as-a-matrix/preview/?format=api",
"download": "https://numbas.mathcentre.ac.uk/question/45373/simon-s-copy-of-represent-a-linear-map-as-a-matrix.zip?format=api",
"source": "https://numbas.mathcentre.ac.uk/question/45373/simon-s-copy-of-represent-a-linear-map-as-a-matrix.exam?format=api",
"metadata": {
"licence": "Creative Commons Attribution 4.0 International",
"description": "<p>Let $P_n$ denote the vector space over the reals of polynomials $p(x)$ of degree $n$ with coefficients in the real numbers. Let the linear map $\\phi: P_4 \\rightarrow P_4$ be defined by: \\[\\phi(p(x))=p(a)+p(bx+c).\\]Using the standard basis for range and domain find the matrix given by $\\phi$.</p>"
},
"status": null,
"resources": []
}