GET /api/questions/568/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
    "url": "https://numbas.mathcentre.ac.uk/api/questions/568/?format=api",
    "name": "Greatest common divisor and Bézout's algorithm",
    "published": true,
    "project": "https://numbas.mathcentre.ac.uk/api/projects/4/?format=api",
    "author": {
        "url": "https://numbas.mathcentre.ac.uk/api/users/7/?format=api",
        "profile": "https://numbas.mathcentre.ac.uk/accounts/profile/7/?format=api",
        "full_name": "Christian Lawson-Perfect",
        "pk": 7,
        "avatar": {
            "20x20": "https://numbas.mathcentre.ac.uk/media/avatars/clp-2023_OVPD4En.20x20.jpg",
            "40x40": "https://numbas.mathcentre.ac.uk/media/avatars/clp-2023_OVPD4En.40x40.jpg",
            "150x150": "https://numbas.mathcentre.ac.uk/media/avatars/clp-2023_OVPD4En.150x150.jpg"
        }
    },
    "edit": "https://numbas.mathcentre.ac.uk/question/568/greatest-common-divisor-and-bezout-s-algorithm/?format=api",
    "preview": "https://numbas.mathcentre.ac.uk/question/568/greatest-common-divisor-and-bezout-s-algorithm/preview/?format=api",
    "download": "https://numbas.mathcentre.ac.uk/question/568/greatest-common-divisor-and-bezout-s-algorithm.zip?format=api",
    "source": "https://numbas.mathcentre.ac.uk/question/568/greatest-common-divisor-and-bezout-s-algorithm.exam?format=api",
    "metadata": {
        "licence": "Creative Commons Attribution 4.0 International",
        "description": "<p>Given two numbers, find the gcd, then use B&eacute;zout's algorithm to find $s$ and $t$ such that $as+bt=\\operatorname{gcd}(a,b)$. Finally, find all solutions of an equation $\\mod b$.</p>"
    },
    "status": "ok",
    "resources": []
}