GET /api/questions/7129/?format=api
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
{
"url": "https://numbas.mathcentre.ac.uk/api/questions/7129/?format=api",
"name": "Inverse Matrix",
"published": true,
"project": "https://numbas.mathcentre.ac.uk/api/projects/4/?format=api",
"author": {
"url": "https://numbas.mathcentre.ac.uk/api/users/7/?format=api",
"profile": "https://numbas.mathcentre.ac.uk/accounts/profile/7/?format=api",
"full_name": "Christian Lawson-Perfect",
"pk": 7,
"avatar": {
"20x20": "https://numbas.mathcentre.ac.uk/media/avatars/clp-2023_OVPD4En.20x20.jpg",
"40x40": "https://numbas.mathcentre.ac.uk/media/avatars/clp-2023_OVPD4En.40x40.jpg",
"150x150": "https://numbas.mathcentre.ac.uk/media/avatars/clp-2023_OVPD4En.150x150.jpg"
}
},
"edit": "https://numbas.mathcentre.ac.uk/question/7129/inverse-matrix/?format=api",
"preview": "https://numbas.mathcentre.ac.uk/question/7129/inverse-matrix/preview/?format=api",
"download": "https://numbas.mathcentre.ac.uk/question/7129/inverse-matrix.zip?format=api",
"source": "https://numbas.mathcentre.ac.uk/question/7129/inverse-matrix.exam?format=api",
"metadata": {
"notes": "<h4><strong><br /></strong>January 2015</h4>\n<p>Rewritten by CP to use the matrix entry part type.</p>\n<p>Why do we zero the second column in two different stages? The algorithm is clearer to me if it goes:</p>\n<ul>\n<li>zero rows 2 and 3 column 1 using row 1</li>\n<li>make sure there's a 1 in the second column of row 2</li>\n<li>zero rows 1 and 3 column 2 using row 2</li>\n<li>make sure there's a 1 in the third column of row 3</li>\n<li>zero rows 1 and 2 column 3 using row 3</li>\n</ul>\n<p><strong> </strong></p>\n<p><strong>5/07/2012:</strong></p>\n<p>Added tags.</p>\n<p>Changed grammar in the question.</p>\n<p>Question appears to be working correctly.</p>\n<p><strong>14/07/2012:</strong></p>\n<p>Need to align columns where input takes place through the stages.</p>",
"description": "<p>$A$ a $3 \\times 3$ matrix. Using row operations on the augmented matrix $\\left(A | I_3\\right)$ reduce to $\\left(I_3 | A^{-1}\\right)$.</p>",
"licence": "Creative Commons Attribution 4.0 International"
},
"status": "ok",
"resources": []
}