9 results authored by Bernhard von Stengel - search across all users.
-
Question in LSE MA103 Intro Abstract Maths
Testing the understanding of the formal definition of $A\subseteq B$.
-
Question in LSE MA103 Intro Abstract Maths
Create a truth table with 3 logic variables to see if two logic expressions are equivalent.
-
Question in LSE MA103 Intro Abstract Maths
Example of a universal statement over the integers and its negation
-
Question in LSE MA103 Intro Abstract Maths
Find the gcd $d$ of two positive integers $a$ and $b$ also find integers $x,y$ such that $ax+by=d$, using the extended Euclidean algorithm.
-
Question in LSE MA103 Intro Abstract Maths
The expression $p\Rightarrow q\Rightarrow r$ is ambiguous.
-
Question in LSE MA103 Intro Abstract Maths
Converting integers from one base to another. Includes binary to decimal.
-
Question in LSE MA103 Intro Abstract Maths
Converting integers from one base to another. The numbers are non-variable.
-
Question in Bernhard's workspace
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.
-
Question in Bernhard's workspace
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.