20 results authored by Tore Gaupseth - search across all users.
-
Question in Tore's workspace
There are copious comments in the definition of the function eqnline about the voodoo needed to have a JSXGraph diagram interact with the input box for a part.
-
Question in Tore's workspace
The javascript function edge
(...)
draws the edges of a triangle -
Exam (5 questions) in Tore's workspace
First- and second order recurrence equations, homogenous and nonhomogenous
-
Question in Tore's workspace
Student is asked whether a quadratic equation can be factorised. If they say "yes", they're asked to give the factorisation.
-
Question in Calasworkshop
Solve a first order algebraic equation
-
Question in Tore's workspace
I en uendelig geometrisk rekke er $a_3 = 2$ og $a_6 = \frac 1 4$.
-
Question in Calasworkshop
Demo of Mathematical expression and Number input questions
-
Question in Narvik
Basic rules of derivatives
-
Question in Tore's workspace
Find the stationary points of the function: $f(x,y)=a x ^ 3 + b x ^ 2 y + c y ^ 2 x + dy$ by choosing from a list of points.
-
Question in Tore's workspace
Finn det stasjonære punktet $(p,q)$ til funksjonen: $f(x,y)=ax^2+bxy+cy^2+dx+gy$. Finn verdiene til $f(p,q)$.
-
Question in Tore's workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;r,\;\neg p,\;\neg q,\;\neg r$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg r) \to (p \land \neg q)) \land \neg r$
-
Question in Tore's workspace
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.
-
Question in Tore's workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}(e \operatorname{op5} f) $ where each of $a, \;b,\;c,\;d,\;e,\;f$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4},\;\operatorname{op5}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \to (p \lor q)$
-
Question in Tore's workspace
Given sentences involving propositions translate into logical expressions.
-
Question in Narvik
No description given
-
Question in Narvik
No description given
-
Question in Narvik
No description given
-
Question in Narvik
No description given
-
Question in Narvik
No description given
-
Question in Tore's workspace
No description given