81 results authored by Andreas Vohns - search across all users.
-
Question in Andreas's workspace
Zifferndarstellungen in b-adischen Systemen
-
Question in Geschichte der Mathematik
Eine ganz olle Kamelle ; )
-
Exam (3 questions) in Geschichte der Mathematik
Grichische Antike 1
-
Question in Geschichte der Mathematik
Archimedische Winkeldreiteilung
-
Question in Geschichte der Mathematik
Zu Euklid Buch 5, Definition 5
-
Exam (3 questions) in Geschichte der Mathematik
Grichische Antike 1
-
Question in Geschichte der Mathematik
Milesisches Zahlzeichensystem
-
Question in Geschichte der Mathematik
Dechiffrierung einer einfachen Zahlenschnur
-
Question in Geschichte der Mathematik
Darstellen von Zahlen an einem Felderabakus (noch ohne Anzeige der Lösung)
-
Question in Geschichte der Mathematik
Konotenschnur generieren lassen
-
Question in Geschichte der Mathematik
Dechiffrierung von Maya-Zahlen
-
Question in Geschichte der Mathematik
Einige Berechnungen am spirituellen Maya-Kalender (Modulo-Rechnungen/Kongruenzen).
-
Question in Andreas's workspace
Einfache Wahrheitstabelle mit zwei Aussagen
-
Question in Andreas's workspace
Simple exercises introducing the fundamental set operations, and NUMBAS syntax for sets.
-
Question in Andreas's workspace
Introductory exercise about set equality
-
Question in Geschichte der Mathematik
Gleichungen lösen nach dem ägyptischen Stile
-
Question in Geschichte der Mathematik
Wirzelziehen nach der baylonischen Methode.
-
Question in Geschichte der Mathematik
Write fractions as sums of unit fractions
-
Question in Andreas's workspace
Zwei Läden verkaufen verschiedenfärbige Sweatshirts.
-
Question in Andreas's workspace
Verschiedene Fragen zu Anzahlen von Teilmengen.
-
Question in Andreas's workspace
This is the question for week 9 of the MA100 course at the LSE. It looks at material from chapters 17 and 18.
Description of variables for part b:
For part b we want to have four functions such that the derivative of one of them, evaluated at 0, gives 0; but for the rest we do not get 0. We also want two of the ones that do not give 0, to be such that the derivative of their sum, evaluated at 0, gives 0; but when we do this for any other sum of two of our functions, we do not get 0. Ultimately this part of the question will show that even if two functions are not in a vector space (the space of functions with derivate equal to 0 when evaluated at 0), then their sum could nonetheless be in that vector space. We want variables which statisfy:
a,b,c,d,f,g,h,j,k,l,m,n are variables satisfying
Function 1: x^2 + ax + b sin(cx)
Function 2: x^2 + dx + f sin(gx)
Function 3: x^2 + hx + j sin(kx)
Function 4: x^2 + lx + m sin(nx)
u,v,w,r are variables satifying
u=a+bc
v=d+fg
w=h+jk
r=l+mn
The derivatives of each function, evaluated at zero, are:
Function 1: u
Function 2: v
Function 3: w
Function 4: r
So we will define
u as random(-5..5 except(0))
v as -u
w as 0
r as random(-5..5 except(0) except(u) except(-u))
Then the derivative of function 3, evaluated at 0, gives 0. The other functions give non-zero.
Also, the derivative of function 1 + function 2 gives 0. The other combinations of two functions give nonzero.We now take b,c,f,g,j,k,m,n to be defined as \random(-3..3 except(0)).
We then define a,d,h,l to satisfy
u=a+bc
v=d+fg
w=h+jk
r=l+mnDescription for variables of part e:
Please look at the description of each variable for part e in the variables section, first.
As described, the vectors V3_1 , V3_2 , V3_3 are linearly independent. We will simply write v1 , v2 , v3 here.
In part e we ask the student to determine which of the following sets span, are linearly independent, are both, are neither:both: v1,v2,v3
span: v1,v1+v2,v1+v2+v3, v1+v2+v3,2*v1+v2+v3
lin ind: v1+v2+v3
neither: v2+v3 , 2*v2 + 2*v3
neither:v1+v3,v1-2*v3,2*v1-v3
neither: v1+v2,v1-v2,v1-2*v2,2*v1-v2