93 results authored by Don Shearman - search across all users.

Show results for

Refine by

  • Status

  • Tags

  • Usage rights

  • Ability Level

  • Topics

  • Heat flow formula
    Ready to use
    Question in MfEP Progress Quizzes by Don Shearman and 1 other

    Two part question, student has to rearrange the heat flow formula (stated in the question) to make T_1 or T_2 the subject (variable is chosen randomly), then find the value of this variable when values of the other variables in the formula are given. These values are randomly chosen.

    Note that the advice for this question has two versions, the one displayed to the student depends on which variable is selected by the question.

  • Lifting machine
    Ready to use
    Question in MfEP Progress Quizzes by Don Shearman and 1 other

    Simultaneous equations question. values for the coefficients are generated to be small numbers, random values are generated for the weights and the resultant energies are calculated for the question. Student needs to solve equations to find coefficients. Advice gives solution using method of elimination.

  • Student is asked to find the distance from a given point, A, to a house, given the distance between A and another point B, and the angles at A and B. Requires use of the sine rule. Distance and angles are randomised.

  • House distance
    Ready to use

    Student is asked to find the distance from a given point, B, to a house, given the distance between B and another point A, and the angles at A and B. Requires use of the sine rule. Distance and angles are randomised.

  • Exact value sine
    Ready to use

    Question about use of trig identities, student has to use identities to find exact value of \(\sin \frac{\pi}{12}\). Question is used in exam where student has to write out the solution and upload it for grading.

  • Exact value cosine
    Ready to use

    Question about use of trig identities, student has to use identities to find exact value of \(\cos \frac{7\pi}{12}\). Question is used in exam where student has to write out the solution and upload it for grading.

  • Energy use
    Draft
    Question in MfEP Progress Quizzes by Don Shearman and 1 other

    Students need to solve a quadratic equation and recognise that only the positive root has physical significance. Roots are randomised with one always negative and one positive. Equation can be factorised fairly easily or the quadratic formula can be used to find the solution. Advice gives solution by factorisation.

  • Question in MfEP Progress Quizzes by Don Shearman and 1 other

    Simultaneous equation problem as circuit analysis to find unknown currents. Students need to solve the equations and type in the solutions for each variable. Advice is given in terms of solution by elimination.

  • Electronic circuit
    Ready to use
    Question in MfEP Progress Quizzes by Don Shearman and 1 other

    Simultaneous equation problem as circuit analysis to find unknown voltages. Students need to solve the equations and type in the solutions for each variable. Advice is given in terms of solution by elimination.

  • Question in MfEP Progress Quizzes by Don Shearman and 1 other

    Question requires students to determine if the smallest angle of a triangle is smaller than a given value. Answer is Yes/No but students need to use cosine rule to find the smallest angle and to know that smallest angle is oppositeshortest side (otherwise they will need to find all angles of the triangle). Designed for a test where students upload handwritten working for each question as a check against guessing. Also designed to make it difficult for students to google or use AI to find the answer.

  • Question in MfEP Progress Quizzes by Don Shearman and 1 other

    Question requires students to determine if the largest angle of a triangle is smaller than a given value. Answer is Yes/No but students need to use cosine rule to find the largest angle and to know that largest angle is opposite longest side (otherwise they will need to find all angles of the triangle). Designed for a test where students upload handwritten working for each question as a check against guessing. Also designed to make it difficult for students to google or use AI to find the answer.

  • Question in MfEP Progress Quizzes by Don Shearman and 1 other

    A two part question. Students are first given the formula for the time for a ball to come to rest after being dropped on a block. Part a) asks the students to rearrange the formula to make e, the coefficient of restitution, the subject of the formula. Part b) gives students realistic values for variables in the formula and asks them to calculate the coefficient of restitution using the formula derived in part a). 

  • Car window 2
    Ready to use

    Students are given lengths of 3 sides of a triangle (all randomised) and asked to find one of the angles in degrees. Requires use of the cosine rule.

  • Car window
    Ready to use

    Students are given two angles and the length of the side between them, they are asked to find the length of the side opposite angle A. Can be completed with the ine rule.

  • Students are asked to solve two simulatineous linear equations in an application of mixing two liquids to arrive at a given final volume and concentration. Students are expected to write up working for their solution and upload it seperately. Final volume, final concentration and concentrations of each solution are randomised.

  • Bending moments
    Ready to use
    Question in MfEP Progress Quizzes by Don Shearman and 1 other

     Question asks student to find zeros of a quadratic equation. In this version students are expected to write up their working and submit it seperately to the Numbas question. Students are expcted to recognise that only the positive solution has physical significance.

  • Ball height
    Ready to use

    Question asks students to find the time taken for an object thrown vertically upward from a platform to reach the ground. Set up randomly chooses environment to be on Earth, Mars or the Moon and uses appropriate acceleration due to gravity. The initial velocity of the body and height of the platform above the ground are randomly selected. In this version students are expected to write up their working and submit it seperately to the Numbas question. Students are expcted to recognise that only the positive solution has physical significance.

  • Border area
    Draft
    Question in MfEP Progress Quizzes by Don Shearman and 1 other

    This question is an application of a quadratic equation. Student is given dimensions of a rectangular area, and an area of pavers that are available. They are asked to calculate the width of a border that can be paved around the given rectangle (assuming border is the same width on all 4 sides). The equation for the area of the border is given in terms of the unknown border width. Students need to recognise that only one solution of the quadratic gives a physically possible solution.

    The dimensions of the rectangle, available area of tiles and type of space are randomised. Numeric variables are constructed so that resulting quadratic equation has one positive and one negative root.

  • Question in HELM books by Don Shearman and 1 other

    A difficult question that involves rearranging a complicated formula, then applying unit conversions to variable values, then evaluating the formula for the selected value. The variable values are randomised.

  • Question in HELM books by Don Shearman and 1 other

    Rearrange an equation for a variable e in k.1/(1-e) and then evaluate for e, given values for the variables.

  • Question in HELM books by Don Shearman and 1 other

    Rearrange a linear formula au + bv + cw = d to make one of u,v,w the subject.

  • Question in HELM books by Don Shearman and 1 other

    Choice of 2 formulae. The first is a fraction of the form y=(r+x)(1-rx). The second is of the form y=sqrt[(1-x)/(1+x) ]. Rearrange to make x the subject.

  • Question in HELM books by Don Shearman and 1 other

    Rearrange a formula with a square root to make a variable under the root the subject.

  • Question in HELM books by Don Shearman and 1 other

    Rearrange a complex formula involving squares, square roots, fractions and additions. This is a fixed question with no randomisation.

  • Question in HELM books by Don Shearman and 1 other

    Rearrange a linear function in x and y to make y the subject. Line variables are randomised.

  • Transpose Gas Formula
    Ready to use
    Question in HELM books by Don Shearman and 1 other

    Transpose PV=RT to make a random variable the subject.

  • Question in HELM books by Don Shearman and 1 other

    Convert a random number of cubic metres into cubic centimetres

  • Question in HELM books by Don Shearman and 1 other

    Convert a random value in square metres to square centimetres.

  • Volume of a solid
    Ready to use
    Question in HELM books by Don Shearman and 1 other

    Given the formula for a cone or a cylinder, and values for r and h, find the volume.

  • Moment of inertia
    Ready to use
    Question in HELM books by Don Shearman and 1 other

    Evaluate J = (1/2)Ma^2 for random values of M and a.