507 results in Content created by Newcastle University - search across all projects.
-
Question
Find a regression equation.
-
Question
Given sample data find mean, standard deviation, median, interquartile range,
-
Question
Finding probabilities from a survey giving a table of data on the alcohol consumption of males. This can be easily adapted to data from other types of surveys.
-
Question
Eight questions on finding least upper bounds and greatest lower bounds of various sets.
-
Question
Find a regression equation.
-
Question
Given data on probabilities of three levels of success of three options and projections of the profits that the options will accrue depending on the level of success, find the expected monetary value (EMV) for each option and choose the one with the greatest EMV.
-
Question
The human resources department of a large finance company is attempting to determine if an employee’s performance is influenced by their undergraduate degree subject. Personnel ratings are used to judge performance and the task is to use expected frequencies and the chi-squared statistic to test the null hypothesis that there is no association.
-
Question
Find out whether the data presented in this question follows a Poisson distribution. Uses the $\chi^2$ test.
-
Question
Multiple response question (2 correct out of 4) covering properties of Riemann integration. Selection of questions from a pool.
-
Question
Create a truth table for a logical expression of the form $a \operatorname{op} b$ where $a, \;b$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and $\operatorname{op}$ one of $\lor,\;\land,\;\to$.
For example $\neg q \to \neg p$.
-
Question
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.
-
Question
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \lor \neg q$
-
Question
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}(e \operatorname{op5} f) $ where each of $a, \;b,\;c,\;d,\;e,\;f$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4},\;\operatorname{op5}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \to (p \lor q)$
-
Question
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;r,\;\neg p,\;\neg q,\;\neg r$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg r) \to (p \land \neg q)) \land \neg r$
-
Question
Find gcd g of two positive integers x, y and also find integers a, b such that ax+by=g with prescribed intervals for a and b.
-
Question
Pick four numbers from $1900\dots 2015$ and ask the student to factorise them.
Custom marking scripts make sure the student has entered a complete factorisation.
-
Question
Factorising 5 to 7 digit numbers into a product of prime powers.
Uses the marking algorithms from question 1 of this CBA
-
Question
Number Theory.
Given $n \in \mathbb{N}$ find $\mu(n),\;\tau(n),\;\sigma(n),\;\phi(n).$
-
Question
Given $\frac{a}{b} \in \mathbb{Q}$ for suitable choices of $a$ and $b$, find all $n \in \mathbb{N}$ such that $\phi(n)=\frac{a}{b}n$.
-
Question
Given one solution of the quadratic equation in $\mathbb{Z}_n$ where $n=pq$ is a product of two primes find the other 3 solutions.
-
Question
Given $m \in \mathbb{N}$, find all $n \in \mathbb{N}$ such that $\phi(n)=m$ and enter the largest and second largest if they exist.
-
Question
Given $m \in \mathbb{N}$, find values of $n\in \mathbb{N}$ such that $\sigma(n)=m$.
There are at most two such solutions in this question.
-
Question
Given $m \in \mathbb{N}$, find the smallest natural number $n \in \mathbb{N}$ with $\tau(n)=m$ divisors.
-
Question
One-way ANOVA example
-
Question
Calculations in $\mathbb{Z_n}$ for three values of $n$.
-
Question
No description given
-
Question
No description given
-
Question
Given two propositions in mathematics using quantifiers, choose the corresponding negation of the proposition. For example, the negation of: $\displaystyle \exists a \in \mathbb{R^+},\;\exists b \in \mathbb{N},\;\exists c \in \mathbb{N}\;\left[(c \lt b+1) \land \left(\frac{1}{2^n} \geq 3a\right)\right]$
-
Question
English sentences are given and for each the appropriate proposition involving quantifiers is to be chosen. Also choose whether the propositions are true or false.
-
Question
No description given