294 results in Content created by Newcastle University - search across all projects.
-
Question
Find $\displaystyle\int \frac{ax^3-ax+b}{1-x^2}\;dx$. Input constant of integration as $C$.
-
Question
Find $\displaystyle \int \frac{nx^3+mx^2+nx + p}{1+x^2}\;dx$. Solution involves $\arctan$.
-
Question
Find $\displaystyle \int \frac{nx^3+mx^2+px +m}{x^2+1} \;dx$
-
Question
Find the polynomial $g(x)$ such that $\displaystyle \int \frac{ax+b}{(cx+d)^{n}} dx=\frac{g(x)}{(cx+d)^{n-1}}+C$.
-
Question
Integrate $f(x) = ae ^ {bx} + c\sin(dx) + px^q$. Must input $C$ as the constant of integration.
-
Question
Find (hyperbolic substitution):
$\displaystyle \int_{b}^{2b} \left(\frac{1}{\sqrt{a^2x^2-b^2}}\right)\;dx$ -
Question
Find $\displaystyle \int\frac{ax^3+ax+b}{1+x^2}\;dx$. Enter the constant of integration as $C$.
-
Question
Find $\displaystyle \int \frac{nx^3+mx^2+nx + p}{1+x^2}\;dx$. Solution involves $\arctan$.
-
Question
Find $\displaystyle \int\frac{ax^3+ax+b}{1+x^2}\;dx$. Enter the constant of integration as $C$.
-
Question
Given $\displaystyle \int (ax+b)e^{cx}\;dx =g(x)e^{cx}+C$, find $g(x)$. Find $h(x)$, $\displaystyle \int (ax+b)^2e^{cx}\;dx =h(x)e^{cx}+C$.
-
Question
Find $\displaystyle \int (ax+b)\cos(cx+d)\; dx $ and hence find $\displaystyle \int (ax+b)^2\sin(cx+d)\; dx $
-
Question
$\displaystyle \int \frac{bx+c}{(ax+d)^n} dx=g(x)(ax+d)^{1-n}+C$ for a polynomial $g(x)$. Find $g(x)$.
-
Question
Find $\displaystyle \int ax ^ m+ bx^{c/n}\;dx$.
-
Question
Find $\displaystyle \int ae ^ {bx}+ c\sin(dx) + px ^ {q}\;dx$.
-
Question
Find $\displaystyle \int \frac{a}{(bx+c)^n}\;dx$
-
Question
Find $\displaystyle \int x(a x ^ 2 + b)^{m}\;dx$
-
Question
Given constant demand for a product, calculate the economic order quantity, and the minimum cost per year.
-
Question
Given constant demand for a product, with a single break point on the price, calculate the economic order quantity, and the minimum cost per year.
-
Exam (8 questions)
Find an integral by choosing a suitable substitution.
-
Exam (4 questions)
Find the integral of an improper fraction.
-
Exam (11 questions)
Questions which rely on knowledge of standard integrals.
-
Exam (2 questions)
Determine the optimal frequency and size of orders given information about demand and prices.
-
Exam (2 questions)
Questions on Kruskal-Wallis and Friedman tests.
-
Exam (1 question)
Apply the Kruskal-Wallis test on some data to determine if a measurement differs between groups.
-
Question
Implicit differentiation.
Given $x^2+y^2+ax+by=c$ find $\displaystyle \frac{dy}{dx}$ in terms of $x$ and $y$.
-
Question
Factorise $x^2+bx+c$ into 2 distinct linear factors and then find $\displaystyle \int \frac{a}{x^2+bx+c }\;dx$ using partial fractions or otherwise.
-
Question
Factorise $x^2+cx+d$ into 2 distinct linear factors and then find $\displaystyle \int \frac{ax+b}{x^2+cx+d}\;dx,\;a \neq 0$ using partial fractions or otherwise.
-
Question
Find $\displaystyle\int \frac{ax+b}{(x+c)(x+d)}\;dx,\;a\neq 0,\;c \neq d $.
-
Question
Given that $\displaystyle \int x({ax+b)^{m}} dx=\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.
-
Question
Find $\displaystyle \int x\sin(cx+d)\;dx,\;\;\int x\cos(cx+d)\;dx $ and hence $\displaystyle \int ax\sin(cx+d)+bx\cos(cx+d)\;dx$