506 results for "answer".
-
Question in How-tosThis question shows how to make the correct answer to a "choose one from a list" part depend on randomised question variables, in a couple of ways. The first part uses JME expressions to define the marks available for each choice. The second part uses the "custom marking matrix" option.
-
Question in Content created by Newcastle University
When are vectors $\boldsymbol{v,\;w}$ orthogonal?
Part b) is not answered in Advice, the given solution is for a different question.
-
Question in Content created by Newcastle University
Find minimum distance between a point and a line in 3-space. The line goes through a given point in the direction of a given vector.
The correct solution is given, however the accuracy of 0.001 is not enough as in some cases answers near to the correct solution are also marked as correct.
-
Question in Content created by Newcastle University
Cartesian form of the parametric representation of a surface, normal vector, and magnitude.
Accuracy for part c) should be made more stringent as can be marked correct for an incorrect answer. Use a different sample range rather than 0 to 1 would help as would setting accuracy to something less than 0.001.
-
Question in Content created by Newcastle University
Find the cosine of the angle between two pairs of 3D and 4D vectors.
The calculations and answers are correct, however the Advice should display the interim calculations of the lengths of vectors and their products to say 6dps. At present the student may be mislead into using 2dps at each stage - the instruction at the start of Advice is somewhat confusing.
-
Question in Content created by Newcastle University
Four questions on finding least upper bounds and greatest lower bounds of various sets.
-
Question in Content created by Newcastle University
Minitab was used to fit an AR(1) model to a stationary time series. Given the output answer the following questions about the model and use the model to make forecasts.
-
Question in Content created by Newcastle University
Given a PDF $f(x)$ on the real line with unknown parameter $t$ and three random observations, find log-likelihood and MLE $\hat{t}$ for $t$.
-
Question in Content created by Newcastle University
Arrivals given by exponential distribution, parameter $\theta$ and $Y$, sample mean on inter-arrival times. Find and calculate unbiased estimator for $\theta$.
-
Question in Content created by Newcastle University
Eight questions on finding least upper bounds and greatest lower bounds of various sets.
-
Question in Content created by Newcastle University
Two ordered data sets, each with 10 numbers. Find the sample standard deviation for each and for their sum.
-
Question in Content created by Newcastle University
A box contains $n$ balls, $m$ of these are red the rest white.
$r$ are drawn without replacement.
What is the probability that at least one of the $r$ is red?
-
Question in Content created by Newcastle University
Two numbers are drawn at random without replacement from the numbers m to n.
Find the probability that both are odd given their sum is even.
-
Question in Content created by Newcastle University
Two ordered data sets, each with 10 numbers. Find the sample standard deviation for each and for their sum.
-
Question in Content created by Newcastle University
Converting odds to probabilities.
-
Question in Content created by Newcastle University
Question on $\displaystyle{\lim_{n\to \infty} a^{1/n}=1}$. Find least integer $N$ s.t. $\ \left |1-\left(\frac{1}{c}\right)^{b/n}\right| \le10^{-r},\;n \geq N$
-
Question in Content created by Newcastle University
Let $x_n=\frac{an+b}{cn+d},\;\;n=1,\;2\ldots$. Find $\lim_{x \to\infty} x_n=L$ and find least $N$ such that $|x_n-L| \le 10^{-r},\;n \geq N,\;r \in \{2,\;3,\;4\}$.
-
Question in Content created by Newcastle University
Seven standard elementary limits of sequences.
-
Question in Content created by Newcastle University
Integrate $f(x) = ae ^ {bx} + c\sin(dx) + px^q$. Must input $C$ as the constant of integration.
-
Question in Content created by Newcastle University
Evaluate $\int_0^{\,m}e^{ax}\;dx$, $\int_0^{p}\frac{1}{bx+d}\;dx,\;\int_0^{\pi/2} \sin(qx) \;dx$.
No solutions given in Advice to parts a and c.
Tolerance of 0.001 in answers to parts a and b. Perhaps should indicate to the student that a tolerance is set. The feedback on submitting an incorrect answer within the tolerance says that the answer is correct - perhaps there should be a different feedback in this case if possible for all such questions with tolerances.
-
Question in Content created by Newcastle University
Find $\displaystyle \int \frac{a}{(bx+c)^n}\;dx$
-
Question in Content created by Newcastle University
Find $\displaystyle \int x\sin(cx+d)\;dx,\;\;\int x\cos(cx+d)\;dx $ and hence $\displaystyle \int ax\sin(cx+d)+bx\cos(cx+d)\;dx$
-
Question in Content created by Newcastle University
$X \sim \operatorname{Binomial}(n,p)$. Find $P(X=a)$, $P(X \leq b)$, $E[X],\;\operatorname{Var}(X)$.
-
Question in Content created by Newcastle University
$W \sim \operatorname{Geometric}(p)$. Find $P(W=a)$, $P(b \le W \le c)$, $E[W]$, $\operatorname{Var}(W)$.
-
Question in Content created by Newcastle University
Determine if the following describes a probability mass function.
$P(X=x) = \frac{ax+b}{c},\;\;x \in S=\{n_1,\;n_2,\;n_3,\;n_4\}\subset \mathbb{R}$.
-
Question in Content created by Newcastle University
Given subset $T \subset S$ of $m$ objects in $n$ find the probability of choosing without replacement $r\lt n-m$ from $S$ and not choosing any element in $T$.
-
Question in Content created by Newcastle University
Reducing fractions to their lowest form by cancelling common factors in the numerator and denominator. There are 4 questions.
-
Question in Content created by Newcastle University
Differentiate $f(x)=x^{m}\sin(ax+b) e^{nx}$.
The answer is of the form:
$\displaystyle \frac{df}{dx}= x^{m-1}e^{nx}g(x)$ for a function $g(x)$.Find $g(x)$.
-
Question in Content created by Newcastle University
Differentiate the following functions: $\displaystyle x ^ n \sinh(ax + b),\;\tanh(cx+d),\;\ln(\cosh(px+q))$
-
Question in Content created by Newcastle University
Elementary examples of multiplication and addition of complex numbers. Four parts.