631 results for "variable".
-
Question in Content created by Newcastle University
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;r,\;\neg p,\;\neg q,\;\neg r$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg r) \to (p \land \neg q)) \land \neg r$
-
Question in Content created by Newcastle University
The random variable $X$ has a PDF which involves a parameter $c$. Find the value of $c$. Find the distribution function $F_X(x)$ and $P(a \lt X \lt b)$.
Also find the expectation $\displaystyle \operatorname{E}[X]=\int_{-\infty}^{\infty}xf_X(x)\;dx$.
-
Question in Content created by Newcastle University
Given a 3x3 matrix with very big elements, perform row operations to find a matrix with single-digit elements. Then reduce that to an upper triangular matrix, and hence find the determinant.
-
Question in Content created by Newcastle University
Two ordered data sets, each with 10 numbers. Find the sample standard deviation for each and for their sum.
-
Question in Content created by Newcastle University
Provided with information on a sample with sample mean and standard deviation, but no information on the population variance, use the t test to either accept or reject a given null hypothesis.
-
Question in Content created by Newcastle University
A box contains $n$ balls, $m$ of these are red the rest white.
$r$ are drawn without replacement.
What is the probability that at least one of the $r$ is red?
-
Question in Content created by Newcastle University
Two ordered data sets, each with 10 numbers. Find the sample standard deviation for each and for their sum.
-
Question in Content created by Newcastle University
Given a random variable $X$ normally distributed as $\operatorname{N}(m,\sigma^2)$ find probabilities $P(X \gt a),\; a \gt m;\;\;P(X \lt b),\;b \lt m$.
-
Question in Content created by Newcastle University
Given three linear combinations of four i.i.d. variables, find the expectation and variance of these estimators of the mean $\mu$. Which are unbiased and efficient?
-
Question in Content created by Newcastle University
Normal distribution $X \sim N(\mu,\sigma^2)$ given. Find $P(a \lt X \lt b)$. Find expectation, variance, $P(c \lt \overline{X} \lt d)$ for sample mean $\overline{X}$.
-
Question in Content created by Newcastle University
Let $x_n=\frac{an+b}{cn+d},\;\;n=1,\;2\ldots$. Find $\lim_{x \to\infty} x_n=L$ and find least $N$ such that $|x_n-L| \le 10^{-r},\;n \geq N,\;r \in \{2,\;3,\;4\}$.
-
Question in Content created by Newcastle University
Seven standard elementary limits of sequences.
-
Question in Content created by Newcastle University
Multiple response question (4 correct out of 8) covering properties of convergent and divergent sequences and boundedness of sets. Selection of questions from a pool.
-
Question in Content created by Newcastle University
$x_n=\frac{an+b}{cn+d}$. Find the least integer $N$ such that $\left|x_n -\frac{a}{c}\right| \le 10 ^{-r},\;n\geq N$, $2\leq r \leq 6$.
-
Question in Content created by Newcastle University
Find (hyperbolic substitution):
$\displaystyle \int_{b}^{2b} \left(\frac{1}{\sqrt{a^2x^2-b^2}}\right)\;dx$ -
Question in Content created by Newcastle University
Evaluate $\int_1^{\,m}(ax ^ 2 + b x + c)^2\;dx$, $\int_0^{p}\frac{1}{x+d}\;dx,\;\int_0^\pi x \sin(qx) \;dx$, $\int_0^{r}x ^ {2}e^{t x}\;dx$
-
Question in Content created by Newcastle University
Find (hyperbolic substitution):
$\displaystyle \int_{b}^{2b} \left(\frac{1}{\sqrt{a^2x^2-b^2}}\right)\;dx$ -
Question in Content created by Newcastle University
Given a piecewise CDF $F_X(b)$ which is discontinuous at several points, find the probabilities at those points and also find the value of $F_X(b)$ at a continuous point and the expectation.
This cdf is a step function and is therefore the cdf of a discrete random variable. This should be stated somewhere in the statement or the solution. Apart from this the question is correct.
-
Question in Content created by Newcastle University
$X \sim \operatorname{Binomial}(n,p)$. Find $P(X=a)$, $P(X \leq b)$, $E[X],\;\operatorname{Var}(X)$.
-
Question in Content created by Newcastle University
$W \sim \operatorname{Geometric}(p)$. Find $P(W=a)$, $P(b \le W \le c)$, $E[W]$, $\operatorname{Var}(W)$.
-
Question in Content created by Newcastle University
$Y \sim \operatorname{Poisson}(p)$. Find $P(Y=a)$, $P(Y \gt b)$, $E[Y],\;\operatorname{Var}(Y)$.
-
Question in Content created by Newcastle University
The random variable $X$ has a PDF which involves a parameter $k$. Find the value of $k$. Find the distribution function $F_X(x)$ and $P(X \lt a)$.
-
Question in Content created by Newcastle University
$X$ is a continuous uniform random variable defined on $[a,\;b]$. Find the PDF and CDF of $X$ and find $P(X \ge c)$.
-
Question in Content created by Newcastle University
Given subset $T \subset S$ of $m$ objects in $n$ find the probability of choosing without replacement $r\lt n-m$ from $S$ and not choosing any element in $T$.
-
Question in Content created by Newcastle University
Express $f(z)$ in real-imaginary form, given that $z=x+iy$.
-
Question in Content created by Newcastle University
Express $f(z)$ in real-imaginary form, given that $z=x+iy$, where $f(z)$ involves hyperbolic functions.
-
Question in Content created by Newcastle University
Find modulus and argument of two complex numbers. Then use De Moivre's Theorem to find negative powers of the complex numbers.
-
Question in Content created by Newcastle University
An object moves in a straight line, acceleration given by:
$\displaystyle f(t)=\frac{a}{(1+bt)^n}$. The object starts from rest. Find its maximum speed.
-
Question in Content created by Newcastle University
Solve for $x(t)$, $\displaystyle\frac{dx}{dt}=\frac{a}{(x+b)^n},\;x(0)=0$
-
Question in Content created by Newcastle University
Finding the distance between two complex numbers using the modulus of their difference. Three parts.