374 results for "variables".
-
Question in Bill's workspace
$x_n=\frac{an+b}{cn+d}$. Find the least integer $N$ such that $\left|x_n -\frac{a}{c}\right| \lt 10 ^{-r},\;n\geq N$, $2\leq r \leq 6$.
-
Question in Morten's workspace
Find the coordinates of the stationary point for $f: D \rightarrow \mathbb{R}$: $f(x,y) = a + be^{-(x-c)^2-(y-d)^2}$, $D$ is a disk centre $(c,d)$.
-
Question in Katie's workspace
Find the stationary point $(p,q)$ of the function: $f(x,y)=ax^2+bxy+cy^2+dx+gy$. Calculate $f(p,q)$.
-
Question in Bill's workspace
Given the pdf $f(x)=\frac{a-bx}{c},\;r \leq x \leq s,\;f(x)=0$ else, find $P(X \gt p)$, $P(X \gt q | X \gt t)$.
-
Question in James's workspace
Template question. The student is asked to perform a two factor ANOVA to test the null hypotheses that the measurement does not depend on each of the factors, and that there is no interaction between the factors.
-
Question in Jessica's workspace
Shows how to define variables to stop degenerate examples.
-
Question in Bill's workspace
Given a probability mass function $P(X=i)$ with outcomes $i \in \{0,1,2,\ldots 8\}$, find the expectation $E$ and $P(X \gt E)$.
-
Question in Bill's workspace
Find the stationary point $(p,q)$ of the function: $f(x,y)=ax^2+bxy+cy^2+dx+gy$. Calculate $f(p,q)$.
-
Question in Bill's workspace
Find the stationary points of the function: $f(x,y)=a x ^ 3 + b x ^ 2 y + c y ^ 2 x + dy$ by choosing from a list of points.
-
Question in Bill's workspace
Find the coordinates of the stationary point for $f: D \rightarrow \mathbb{R}$: $f(x,y) = a + be^{-(x-c)^2-(y-d)^2}$, $D$ is a disk centre $(c,d)$.
-
Question in Bill's workspace
Find the critical point $(0,a)$ of the function: $f(x,y)=ax^3+bx^2y+cy^2+dy+f$ and find its type using the test given by the Hessian matrix.
-
Question in Christoph's workspace
Template question. The student is asked to perform a two factor ANOVA to test the null hypotheses that the measurement does not depend on each of the factors, and that there is no interaction between the factors.
-
Question in Peter's workspace
Example showing how to calculate the probability of A or B using the law $p(A \;\textrm{or}\; B)=p(A)+p(B)-p(A\;\textrm{and}\;B)$.
Easily adapted to other applications.
-
Question in Andrew's workspace
Template question. The student is asked to perform a two factor ANOVA to test the null hypotheses that the measurement does not depend on each of the factors, and that there is no interaction between the factors.