10967 results.
-
Question in Content created by Newcastle University
$f(x,y)$ is the PDF of a bivariate distribution $(X,Y)$ on a given rectangular region in $\mathbb{R}^2$. Write down the limits of the integrations needed to find $P(X \ge a)$, the marginal distributions $f_X(x),\;f_Y(y)$ and the conditional probability $P(Y \le b|X \ge c)$
-
Question in Content created by Newcastle University
Calculating simple probabilities using the exponential distribution.
-
Question in Content created by Newcastle University
$X \sim \operatorname{Binomial}(n,p)$. Find $P(X=a)$, $P(X \leq b)$, $E[X],\;\operatorname{Var}(X)$.
-
Question in Content created by Newcastle University
$W \sim \operatorname{Geometric}(p)$. Find $P(W=a)$, $P(b \le W \le c)$, $E[W]$, $\operatorname{Var}(W)$.
-
Question in Content created by Newcastle University
$Y \sim \operatorname{Poisson}(p)$. Find $P(Y=a)$, $P(Y \gt b)$, $E[Y],\;\operatorname{Var}(Y)$.
-
Question in Content created by Newcastle University
Given a normal distribution $X \sim N(m,\sigma^2)$ find $P(X \lt a),\; a \lt m$ and the conditional probability $P(X \gt b | X \gt c)$ where $b \lt m$ and $c \gt m$.
-
Question in Content created by Newcastle University
The random variable $X$ has a PDF which involves a parameter $k$. Find the value of $k$. Find the distribution function $F_X(x)$ and $P(X \lt a)$.
-
Question in Content created by Newcastle University
3 Repeated integrals of the form $\int_a^b\;dx\;\int_c^{f(x)}g(x,y)\;dy$ where $g(x,y)$ is a polynomial in $x,\;y$ and $f(x)$ is a degree 0, 1 or 2 polynomial in $x$.
-
Question in Content created by Newcastle University
Repeated integral of the form: $\displaystyle I=\int_0^1\;dx\;\int_0^{x^{m-1}}mf(x^m+a)dy$
-
Question in Content created by Newcastle University
Given the PDF for $Y \sim \operatorname{Exp}(\lambda)$ find the CDF, $P(a \le Y \le b)$ and $\operatorname{E}[Y],\;\operatorname{Var}(Y)$
-
Question in Content created by Newcastle University
An experiment is performed twice, each with $5$ outcomes
$x_i,\;y_i,\;i=1,\dots 5$ . Find mean and s.d. of their differences $y_i-x_i,\;i=1,\dots 5$.
-
Question in Content created by Newcastle University
Given the parameters of a bivariate Normal distribution $(X,Y)$ find the parameters of the Normal Distributions: $aX,\;bY,\;cX+dY,\; Y|(X=f),\;X|(Y=g)$
-
Question in Content created by Newcastle University
Determine if the following describes a probability mass function.
$P(X=x) = \frac{ax+b}{c},\;\;x \in S=\{n_1,\;n_2,\;n_3,\;n_4\}\subset \mathbb{R}$.
-
Question in Content created by Newcastle University
$X$ is a continuous uniform random variable defined on $[a,\;b]$. Find the PDF and CDF of $X$ and find $P(X \ge c)$.
-
Question in Content created by Newcastle University
Given subset $T \subset S$ of $m$ objects in $n$ find the probability of choosing without replacement $r\lt n-m$ from $S$ and not choosing any element in $T$.
-
Question in Content created by Newcastle University
Questions testing understanding of numerators and denominators of numerical fractions, and reduction to lowest terms.
-
Question in Content created by Newcastle University
Solve for $x$: $\displaystyle ax+b = cx+d$
-
Question in Content created by Newcastle University
Solve for $x$: $\displaystyle \frac{px+s}{ax+b} = \frac{qx+t}{cx+d}$ with $pc=qa$.
-
Question in Content created by Newcastle University
Solve for $x$: $\displaystyle \frac{s}{ax+b} = \frac{t}{cx+d}$
-
Question in Content created by Newcastle University
Questions on right-angled triangles asking for the calculation of angles using inverse-trigonometrical functions.
-
Exam (21 questions) in Content created by Newcastle UniversityQuestions used in a university course titled "Foundations of probability"
-
Question in Content created by Newcastle University
Find the centre and radius of a circle when given an equation in standard form.
-
Question in Content created by Newcastle University
Questions testing understanding of numerators and denominators of numerical fractions, and reduction to lowest terms.
-
Question in Content created by Newcastle University
Express $\displaystyle b+ \frac{dx+p}{x + q}$ as an algebraic single fraction.
-
Question in Content created by Newcastle University
Express $\displaystyle \frac{ax+b}{x + c} \pm \frac{dx+p}{x + q}$ as an algebraic single fraction over a common denominator.
-
Question in Content created by Newcastle University
Express $\displaystyle \frac{ax+b}{cx + d} \pm \frac{rx+s}{px + q}$ as an algebraic single fraction over a common denominator.
-
Question in Content created by Newcastle University
Find $B$ and $C$ such that $x^2+bx+c = (x+B)^2+C$.
-
Question in Content created by Newcastle University
Find $a$, $B$ and $C$ such that $ax^2+bx+c = a(x+B)^2+C$.
-
Question in Content created by Newcastle University
Harder questions testing addition, subtraction, multiplication and division of numerical fractions and reduction to lowest terms. They also test BIDMAS in the context of fractions.
-
Question in Content created by Newcastle University
Find the equation of the straight line parallel to the given line that passes through the given point $(a,b)$.