6206 results.
-
Question in Nursing
Is this number divisible by 125? Half the time the number is, half the time it isn't. Steps give the divisibility test.
-
Question in Nursing
Is this number divisible by 250? Half the time the number is, half the time it isn't. Steps give the divisibility test.
-
Question in Nursing
Is this number divisible by 20? Half the time the number is, half the time it isn't.
-
Question in Nursing
Is this number divisible by 50? Half the time the number is, half the time it isn't. Steps give the divisibility test and a way to determine the number of fifties.
-
Question in Nursing
Is this number divisible by 25? Half the time the number is, half the time it isn't. Steps give the divisibility test and a way to determine the number of twenty-fives.
-
Question in LSE MA103 Intro Abstract Maths
Find the gcd $d$ of two positive integers $a$ and $b$ also find integers $x,y$ such that $ax+by=d$, using the extended Euclidean algorithm.
-
Question in Nursing
Is this number divisible by 2? Half the time the number is, half the time it isn't. Steps give the divisibility test.
-
Question in Nursing
Is this number divisible by 9? Half the time the number is, half the time it isn't. Steps give the divisibility test.
-
Question in Nursing
Is this number divisible by 3? Half the time the number is, half the time it isn't. Steps give the divisibility test.
-
Question in Nursing
Is this number divisible by 10? Half the time the number is, half the time it isn't. Steps give the divisibility test and a way to determine the number of tens.
-
Question in Nursing
Is this number divisible by 5? Half the time the number is, half the time it isn't. Steps give the divisibility test and a way to determine the number of fives.
-
Exam (7 questions) in Neil's workspace
Tests Algebra, Graphing Straight Lines, Probability, Statistics
-
Question in David's workspace
Display a fraction, given as a numerator and a denominator, as a mixed fraction when appropriate.
-
Exam (2 questions) in Matthew's workspace
Open and answer
-
Question in Durham Test Questions
Straightforward question: student must find the general solution to a second order constant coefficient ODE. Uses custom marking algorithm to check that both roots appear and that the solution is in the correct form (e.g. two arbitrary constants are present). Arbitrary constants can be any non space-separated string of characters. The algorithm also allows for the use of $e^x$ rather than $\exp(x)$.
Unit tests are also included, to check whether the algorithm accurately marks when the solution is correct; when it's correct but deviates from the 'answer'; when one or more roots is incorrect; or when the roots are correct but constants of integration have been forgotten.
-
Exam (1 question) in Matthew's workspace
Simple addition 3
-
Question in Peter's workspace
No description given
-
Question in CHY1205
Practice of conversion between SI units of mass, volume & length.
-
Exam (12 questions) in Jo-Ann's workspace
Transposition of formulae. Changing the subject of an equation.
rebel rebelmaths
-
Exam (4 questions) in Core Foundation Maths, Pre-arrival.
Fourth part of the Core Foundation Maths pre-arrival self-assessment material:
Question 1: Algebra IV: Properties of indices (1) - Multiplication/Division
Question 2: Algebra IV: Properties of indices (2) - Fractions
Question 3: Algebra IV - Properties of Indices (4) - Further
Question 4: Numbers V: standard index form (conversions and operations)
-
Exam (6 questions) in Jo-Ann's workspace
6 questions which introduce the user to the Numbas system.
-
Question in Jo-Ann's workspace
Practice with adding, subtracting and dividing basic algebraic fractions
-
Question in Jo-Ann's workspace
Several problems involving dividing fractions, with increasingly difficult examples, including mixed numbers and complex fractions.
-
Question in LSE MA100 (Bugs fixed, September 2018)
This is the question for Lent Term week 10 of the MA100 course at the LSE. It looks at material from chapters 39.
-
Question in LSE MA100 (Bugs fixed, September 2018)
This is the question for Lent Term week 9 of the MA100 course at the LSE. It looks at material from chapters 37 and 38.
-
Question in LSE MA100 (Bugs fixed, September 2018)
This is the question for Lent Term week 8 of the MA100 course at the LSE. It looks at material from chapters 35 and 36.
-
Question in LSE MA100 (Bugs fixed, September 2018)
This is the question for Lent Term week 7 of the MA100 course at the LSE. It looks at material from chapters 33 and 34.
The following is a description of parts a and b. In particular it describes the varaibles used for those parts.
This question (parts a and b) looks at optimisation problems using the langrangian method. parts a and b of the question we will ask the student to optimise the objective function f(x,y) = y + (a/b)x subject to the constraint function r^2 = (x-centre_x)^2 + (y-centre_y)^2.
The variables centre_x and centre_y take values randomly chosen from {6,7,...,10} and r takes values randomly chosen from {1,2,...,5}.
We have the ordered set of variables (a,b,c) defined to be randomly chosen from one of the following pythagorean triplets: (3,4,5) , (5,12,13) , (8,15,17) , (7,24,25) , (20,21,29). The a and b variables here are the same as those in the objective function. They are defined in this way because the minimum will occur at (centre_x - (a/c)*r , centre_y - (b/c)*r) with value centre_y - (b/c)r + (a/b) * centre_x - (a^2/bc)*r , and the maximum will occur at (centre_x + (a/c)*r , centre_y + (b/c)*r) with value centre_y + (b/c)r + (a/b) *centre_x + (a^2/bc)r. The minimisation problem has lambda = -c/(2br) and the maximation problem has lambda* = c/(2br).
We can see that all possible max/min points and values are nice rational numbers, yet we still have good randomisation in this question. :)
-
Question in LSE MA100 (Bugs fixed, September 2018)
This is the question for Lent Term week 6 of the MA100 course at the LSE. It looks at material from chapters 31 and 32.
-
Question in LSE MA100 (Bugs fixed, September 2018)
This is the question for Lent Term week 5 of the MA100 course at the LSE. It looks at material from chapters 29 and 30.
-
Question in LSE MA100 (Bugs fixed, September 2018)
This is the question for Lent Term week 4 of the MA100 course at the LSE. It looks at material from chapters 27 and 28.