568 results for "log".
-
Exam (9 questions) in Deirdre's workspace
Introduction to logs, Rules of logs, Log equations
rebel
rebelmaths
-
Question in Bernhard's workspace
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.
-
Exam (1 question) in Blathnaid's workspace
Questions about logical predicates, and basic set theory concepts.
-
Exam (1 question) in Blathnaid's workspace
Questions about logical predicates, and basic set theory concepts.
-
Question in Rachel's workspace
Area and perimeter of parallelograms
-
Exam (3 questions) in Blathnaid's workspace
Questions about logical predicates, and basic set theory concepts.
-
Question in Tst
Shows how to enter a logarithm to an arbitrary base, in a mathematical expression part.
-
Question in Evan's workspace
Practice using the log rules to add and subtract logarithms
edited steve kilgallon's question to add answers to the advice for paper grading.
-
Exam (2 questions) in Francis's workspace
No description given
-
Exam (2 questions) in Francis's workspace
No description given
-
Exam (2 questions) in Francis's workspace
No description given
-
Question in Logs and exponentials
No description given
-
Question in Logs and exponentials
No description given
-
Question in Logs and exponentials
Practice using the log rules to add and subtract logarithms
-
Question in Logs and exponentials
Practice using the log rules to add and subtract logarithms
-
Question in Logs and exponentials
Solve a logarithmic expression for an unknown $x$
-
Question in Mensuration
Recall and interpretation of formula for area of a parallelogram.
-
Question in Julie's workspace
Solve for $x$: $\log_{a}(x+b)- \log_{a}(x+c)=d$
-
Question in Julie's workspace
Solve for $x$: $\displaystyle 2\log_{a}(x+b)- \log_{a}(x+c)=d$.
Make sure that your choice is a solution by substituting back into the equation.
-
Question in Julie's workspace
Practice using the log rules to add and subtract logarithms
-
Question in Pretoria GEF Support Material
Differentiating quadratics, natural logs and trig.
-
Question in Sanka's workspace
Solve a logarithmic expression for an unknown $x$
-
Question in Nuala's workspace
No description given
-
Exam (2 questions) in Nuala's workspace
No description given
-
Question in Tore's workspace
Given sentences involving propositions translate into logical expressions.
-
Question in Tore's workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}(e \operatorname{op5} f) $ where each of $a, \;b,\;c,\;d,\;e,\;f$ can be one the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4},\;\operatorname{op5}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg p) \to (p \land \neg q)) \to (p \lor q)$
-
Question in Tore's workspace
Create a truth table for a logical expression of the form $(a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d)$ where $a, \;b,\;c,\;d$ can be the Boolean variables $p,\;q,\;\neg p,\;\neg q$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3}$ one of $\lor,\;\land,\;\to$.
For example: $(p \lor \neg q) \land(q \to \neg p)$.
-
Question in Tore's workspace
Create a truth table for a logical expression of the form $((a \operatorname{op1} b) \operatorname{op2}(c \operatorname{op3} d))\operatorname{op4}e $ where each of $a, \;b,\;c,\;d,\;e$ can be one the Boolean variables $p,\;q,\;r,\;\neg p,\;\neg q,\;\neg r$ and each of $\operatorname{op1},\;\operatorname{op2},\;\operatorname{op3},\;\operatorname{op4}$ one of $\lor,\;\land,\;\to$.
For example: $((q \lor \neg r) \to (p \land \neg q)) \land \neg r$
-
Exam (2 questions) in Algebra
No description given
-
Question in Nursing
No description given